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abstract
Machine learning methods, a family of statistical techniques with origins in the field of artificial

intelligence, are recognized as holding great promise for the advancement of understanding and
prediction about ecological phenomena. These modeling techniques are flexible enough to handle
complex problems with multiple interacting elements and typically outcompete traditional approaches
(e.g., generalized linear models), making them ideal for modeling ecological systems. Despite their
inherent advantages, a review of the literature reveals only a modest use of these approaches in ecology
as compared to other disciplines. One potential explanation for this lack of interest is that machine
learning techniques do not fall neatly into the class of statistical modeling approaches with which most
ecologists are familiar. In this paper, we provide an introduction to three machine learning approaches
that can be broadly used by ecologists: classification and regression trees, artificial neural networks,
and evolutionary computation. For each approach, we provide a brief background to the methodology,
give examples of its application in ecology, describe model development and implementation, discuss
strengths and weaknesses, explore the availability of statistical software, and provide an illustrative
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example. Although the ecological application of machine learning approaches has increased, there
remains considerable skepticism with respect to the role of these techniques in ecology. Our review
encourages a greater understanding of machine learning approaches and promotes their future
application and utilization, while also providing a basis from which ecologists can make informed
decisions about whether to select or avoid these approaches in their future modeling endeavors.

Introduction

P REDICTIVE ABILITY is considered by
many to be the ultimate goal in ecol-

ogy (Peters 1991). Recent decades have
witnessed an increasing role of prediction
in applied ecology, in large part because of
the mounting threats to biological diversity
from global environmental change and the
resulting need for ecological forecasting
(Clark et al. 2001). Such efforts, however,
are hindered by the many complexities of
ecosystems, including historical legacies,
time lags, nonlinearities, interactions, and
feedback loops that vary in both time and
space (Levin 1998). Accordingly, ecologists
are challenged by the need to understand
and predict complex ecological processes
and patterns.

One promising set of quantitative tools
that can help solve such environmental
challenges (e.g., global climate change,
emerging diseases, biodiversity loss) is cur-
rently being researched and developed un-
der the rubric of ecological informatics
(Green et al. 2005). Ecological informatics,
or eco-informatics, is an interdisciplinary
framework that promotes the use of ad-
vanced computational technology to reveal
ecological processes and patterns across
levels of ecosystem complexity (Recknagel
2003). Machine learning (ML) is a rapidly
growing area of eco-informatics that is con-
cerned with identifying structure in com-
plex, often nonlinear data and generating
accurate predictive models. Recent ad-
vances in data collection technology, such
as remote-sensing and data network cen-
ters and archives, have produced large,
high-resolution datasets spanning spatial
and temporal extents that were, until re-
cently, unattainable. As a result, ecologists
have the exciting opportunity to take ad-
vantage of ML approaches to model the
complex relationships inherent in these
large datasets. Applications of ML meth-

ods in ecology are diverse, and range from
testing biogeographical, ecological, and evo-
lutionary hypotheses to modeling species
distributions for conservation and manage-
ment planning (e.g., Fielding 1999; Reckna-
gel 2001, 2003; Cushing and Wilson 2005;
Ferrier and Guisan 2006; Park and Chon
2007).

ML algorithms can be organized accord-
ing to a diverse taxonomy that reflects the
desired outcome of the modeling process.
A number of ML techniques have been
promoted in ecology as powerful alterna-
tives to traditional modeling approaches.
These include supervised learning ap-
proaches that attempt to model the rela-
tionship between a set of inputs and known
outputs, such as artificial neural networks
(Lek et al. 1996), cellular automata (Ho-
geweg 1988), classification and regression
trees (De’ath and Fabricius 2000), fuzzy logic
(Salski and Sperlbaum 1991), genetic al-
gorithms and programming (Stockwell
and Noble 1992), maximum entropy (Phil-
lips et al. 2006), support vector machines
(Drake et al. 2006), and wavelet analysis
(Cho and Chon 2006). In addition, unsuper-
vised learning approaches are used to reveal
patterns in ecological data, including Hop-
field neural networks (Hopfield 1982)
and self-organizing maps (Kohonen 2001).
The growing use of these methods in recent
years is the direct result of their ability to
model complex, nonlinear relationships in
ecological data without having to satisfy the
restrictive assumptions required by conven-
tional, parametric approaches (Guisan and
Zimmermann 2000; Peterson and Vieglais
2001; Olden and Jackson 2002a; Elith et al.
2006). As a result, ML approaches often ex-
hibit greater power for explaining and pre-
dicting ecological patterns. The recent for-
mation of The International Society for
Ecological Informatics, as well as the birth of
the scientific journal Ecological Informatics,
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supports the observation that ML has
evolved from a field of theoretical demon-
strations to one of significant and applied
value in ecology.

Perhaps not surprisingly, ML approaches
are predominantly used by ecologists with
strong computational skills, and they have
seen only limited use within the broader
scientific community. Why have ML ap-
proaches not been widely embraced by
ecologists? One reason is that ecologists
may lack the fundamental background
needed to understand and implement
these methods, and they may be unsure
about how to select approaches that best
suit their needs. At the same time, re-
searchers in the field of ecological infor-
matics continue to advance better and
more complex ML algorithms, arguing
that more powerful computers and in-
creased availability of large ecological data
sets will move them further into the main-
stream. Unfortunately, as the technology
in ML grows, so does the inaccessibility of
these techniques to the majority of ecolo-
gists who still require a basic understand-
ing of why, when, where, and how such
approaches should be applied.

We argue that there are relatively few
examples in the ecological literature that
encourage the exploration and promote
the application of ML methods. In this pa-
per, we will address this concern by provid-
ing a comprehensive review of three ML
methods that have recently gained popu-
larity among ecologists: classification and
regression trees, artificial neural networks,
and evolutionary computation (genetic al-
gorithms and programming); however, we
recognize that other statistical approaches,
including generalized additive models and
multivariate adaptive regression splines,
have also illustrated utility in ecology (e.g.,
Austin 2007; Elith and Leathwick 2007).
For each approach, we will provide a brief
background to the methodology, give ex-
amples of its application in ecology, de-
scribe model development and implemen-
tation, discuss strengths and weaknesses,
and explore the availability of statistical
software. In order to more clearly illustrate
the basic principles of the ML methodolo-

gies, we will apply each method to a com-
mon ecological question, namely model-
ing species richness (dependent variable)
as a function of environmental descriptors
(independent variables). We stress that our
review is not meant to replace previously
published texts on ML (e.g., Fielding 1999;
Lek and Guégan 2000), rather it is in-
tended to provide a gentle introduction to
ML methods that is more readily accessible
to the broad community of ecologists. We
accomplish this by favoring written expla-
nation over mathematical formulas and by
avoiding statistical jargon that often serves to
limit the readership and comprehension of
ML methodologies by ecologists. Put simply,
our hope is that this paper will encourage a
greater understanding and the future appli-
cation of ML approaches in the ecological
sciences.

An Illustrative Example of Machine
Learning Methods

In order to illustrate ML methodologies,
we will use an empirical example relating
fish species richness to environmental char-
acteristics of 8236 north-temperate lakes in
Ontario, Canada. Identifying both patterns
and drivers of species richness is a long-
standing problem in ecology because envi-
ronmental factors typically interact in non-
linear ways to influence the number of
species at any particular site. This example
is used solely to demonstrate a common
statistical problem in which a researcher is
interested in modeling a single dependent
variable as a function of multiple indepen-
dent variables and, thus, is not meant as a
comparative analysis of approaches. We
chose this relatively simple dataset and
straightforward ecological problem for illus-
trative purposes. Although ML approaches
are well-suited for addressing even seemingly
simple problems, many of the advantages of
these approaches can be brought to bear on
much more complex problems as well.

We selected 8 whole-lake descriptors
that are related to habitat requirements of
temperate fish species of the Ontario re-
gion (Minns 1989). Regional climate was
represented by the mean monthly air tem-
perature (TEMP, measured in °C) and
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mean monthly precipitation (PPT, cm) for
each lake based on data collected from 1836
recording stations between 1960 and 1989 by
the Atmospheric Environment Service of En-
vironment Canada (see Vander Zanden et al.
2004). Whole-lake measures of habitat in-
cluded lake surface area (AREA, km2), total
shoreline perimeter (SHP, km), maximum
depth (MAXD, m), elevation (ELEV, m),
secchi disc depth (SDD, m), and pH. The
primary source of the fish distribution data
was the Fish Species Distribution Data Sys-
tem of the Ontario Ministry of Natural Re-
sources. To assess predictive performance of
the models, we used 10-fold cross-validation.
In this procedure, the original data is parti-
tioned into 10 subsamples each containing
n/10 observations; a single subsample is re-
tained as the validation data for testing the
model, and the remaining 9 subsamples are
used as training data. The cross-validation
process is then repeated 10 times (hence,
folds), with each of the subsamples used ex-
actly once as the validation data. The 10 re-
sults are then combined to produce a single
set of predictions for all n observations. For
general information regarding model selec-
tion, model validation, and the assessment of
predictive performance (i.e., topics that are
not the focus of our study), we refer the
reader to Fielding and Bell (1997).

Classification and Regression Trees
(CARTs)

background and ecological
applications

Classification and Regression Trees
(CARTs), collectively called decision trees,
date from the pioneering work of Morgan
and Sonquist (1963) in the social sciences,
and their use in statistical literature was re-
kindled by the seminal monograph of
Breiman et al. (1984). Since this time, deci-
sion trees have been widely used in a number
of applied sciences including medicine, com-
puter science, and psychology (Ripley 1996).
Recent years have seen CARTs emerge as
powerful statistical tools for analyzing com-
plex ecological datasets because they offer a
useful alternative when modeling nonlinear
data containing independent variables that

are suspected of interacting in a hierarchical
fashion (De’ath and Fabricius 2000).

There have been numerous ecological
applications of CARTs across a wide range
of topics. Decision trees have been used
to develop habitat models for threatened
birds (O’Connor et al. 1996), tortoise spe-
cies (Anderson et al. 2000), and endan-
gered crayfishes (Usio 2007). Iverson and
Prasad (1998) forecasted potential shifts in
tree species distributions resulting from cli-
matic warming, Rollins et al. (2004) quan-
tified the relationship between the fre-
quency and severity of forest fires and
landscape structure, and Mercado-Silva et
al. (2006) predicted patterns of fish species
invasions in the Laurentian Great Lakes.
Other applications have involved modeling
patterns of variability in PCB concentra-
tions of salmonid species (Lamon and
Stow 1999), predicting days postpartum
from fatty acids measured in harbor seal
milk (Smith et al. 1997), delineating geo-
graphic patterns of bottlenose dolphin
ecotypes (Torres et al. 2003), and develop-
ing models that assessed the vulnerability
of the landscape to tsunami damage (Iver-
son and Prasad 2007).

methodology
CART analysis is a form of binary recur-

sive partitioning where classification and
regression trees refer to the modeling of
categorical and continuous response vari-
ables, respectively (Bell 1999). The general
anatomy of a decision tree is presented in
Figure 1. The term “binary” implies that
each group of observations, represented by
a node in a decision tree, is split into two
child nodes, a process through which the
original node becomes a parent node. The
term “recursive” refers to the fact that the
binary partitioning process can be applied
repetitively. Thus, each parent node can
give rise to two child nodes and, in turn,
each of these child nodes may themselves
be split, forming additional children. The
term “partitioning” refers to the fact that
the dataset is split into sections or parti-
tioned. Although there are many different
versions of binary recursive partitioning
available, each with its own unique details,
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the overall methodology is consistent re-
gardless of the exact implementation.

CART analysis consists of three basic
steps. The first step involves tree building,
during which a decision tree is built by
repeatedly partitioning the data set into a
nested series of mutually exclusive groups,
each of them as homogeneous as possible
with respect to the response variable. Tree
building begins at the root node with the
entire dataset, and the algorithm formu-
lates split-defining conditions for each pos-
sible value of all the independent variables
to create candidate—or surrogate—splits.
Other splitting criteria are also available.
Next, the algorithm selects the best candi-
date split that minimizes the average “im-
purity” of the two child nodes. Impurity is
based on a goodness of fit measure, such
as the information (entropy) index and
the Gini index for classification trees and
sums of squares about group means for
regression trees (De’ath and Fabricius 2000).
The algorithm continues recursively with
each of the new children nodes until tree
building is stopped.

The second step consists of stopping the

tree building process. The process is stopped
when: (1) there are only n observations in
each of the child nodes (where n is set by
the user), (2) all observations within each
child node have the identical distribution
of independent variables, making splitting
impossible, or (3) an external limit on the
number of splits in the tree or minimum
purity threshold is achieved. A terminal
node or “leaf” is a node that the algorithm
cannot partition any further because one
of the above criteria is met. In classification
trees, each node—even the root node—is
assigned a predicted probability for each
class (often the class with the greatest prob-
ability is assigned to the node). For regres-
sion trees, the predicted value for each
node is typically defined as the mean or
median value of the response variable for
the observations in the node.

The third step involves tree pruning and
optimal tree selection. The most common
method used is called “cost-complexity”
pruning, which results in the creation of a
sequence of progressively simpler trees
through the pruning or cutting of increas-
ingly important nodes. This method relies

Figure 1. The General Anatomy of a Classification or Regression Tree
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on a complexity parameter, denoted �,
which is gradually increased during the
pruning process. Starting at the terminal
nodes, the child nodes are pruned away if
the resulting change in the model error is
less than � multiplied by the change in tree
complexity. Thus, � is a measure of how
much additional accuracy a split must add
to the entire tree to warrant the additional
complexity. As � is increased, more and
more nodes of increasing importance are
pruned away, resulting in simpler and sim-
pler trees (Bell 1999). The goal in selecting
the optimal tree is to find the correct com-
plexity parameter � so that the information
in the learning dataset is fit but not overfit,
the latter condition occurring when the
model successfully describes the specifics of
the original data but is unable to predict
additional data. It is common practice to de-
termine the optimal size of the decision tree
(i.e., the number of terminal nodes) by se-
lecting the tree size with the smallest model
error based on repeated cross-validations of
the data. Alternatively, the smallest tree
whose model error falls within the one stan-
dard error rule is also used (see De’ath and
Fabricius 2000). For further discussion on
validation techniques and their use in iden-
tifying ideal tree size, see Breiman et al.
(1984), Bell (1999), Hastie et al. (2001), and
Sutton (2005).

Based on the branching topology of the
decision tree, one can interpret the pri-
mary splits that represent the most impor-
tant variables in the prediction process, as
well as the best competitive surrogate splits
that also show high classification power. To
calculate the overall importance of the in-
dependent variables in a decision tree, the
CART analysis quantifies the improvement
measure attributable to each variable in its
role as a surrogate to the primary split. The
values of these improvements are summed
over each node, totaled, and scaled relative
to the best performing variable, i.e., ex-
pressed as a relative importance on a
0–100% scale (Breiman et al. 1984).

strengths and weaknesses
CART analysis has a number of advan-

tages over traditional statistical methods

that make it particularly attractive for mod-
eling ecological data. These include the
fact that CARTs are: (1) inherently non-
parametric and, therefore, not affected by
heteroscedasticity or distributional error
structures that affect parametric proce-
dures; (2) invariant to monotonic transfor-
mations of the data, thus eliminating the
need for data transformations; (3) able
to handle mixed numerical data includ-
ing categorical, interval, and continuous
variables; (4) able to deal with missing
variables by using the surrogate splitting
variables in the decision tree; (5) not af-
fected by outliers (outliers are isolated into
a node, and have only a minimal effect
on splitting); (6) able to detect and reveal
interactions in the data set; (7) able to
effectively deal with higher dimensional-
ity (i.e., it can identify a reduced set of
important variables from a large number
of submitted variables); (8) relatively sim-
ple to interpret graphically. In general, of
the three ML approaches reviewed here,
CART is the most flexible with respect to
data requirements and the most transpar-
ent when it comes to understanding the
modeling process (Table 1).

Despite their many advantages, CARTs
have a number of weaknesses that are
rarely discussed in the literature. First,
analyses that identify “splitting” variables
by employing the exhaustive search of all
possibilities have the chance of increasing
the complexity of the search, thereby caus-
ing computational strain, especially with
large data sets (although advances in com-
puter speed have partially eliminated this
problem). This tends to select a decision
tree that has more splits, thus promoting
overfitting. Second, deducing rules from a
decision tree can be very complicated be-
cause it is not based on a probabilistic
model. Therefore, there is no probability
level or confidence interval associated with
predictions derived from using a classifica-
tion or regression tree to classify a new set
of data. Third, correlations among in-
dependent variables can complicate the
identification of important interactions.
Fourth, decision trees are typically unsta-
ble, i.e., sometimes small changes in the
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learning sample values can lead to signifi-
cant changes in the variables used in the
splits. As a result, overall variable impor-
tance cannot be determined by only exam-
ining the final tree; it also requires the
examination of all possible surrogate splits.
Fifth, perhaps the greatest weakness of
CARTs is that the final decision tree is not
guaranteed to be the optimal tree. At each
splitting decision in the tree growing pro-
cess, the selected split is the one that re-
sults immediately in reduced impurity (for
classification) or variation (for regression).
One might expect that some other split,
which would appear suboptimal at the
time, could produce more effective future
splits (Sutton 2005). A variety of ap-
proaches have been developed to address
the latter two problems, including the ap-
plication of bagging and boosting tech-
niques and the creation of an ensemble
tree based on random forests of multiple
trees. We refer the reader to De’ath (2007)
and Cutler et al. (2007) for an ecological
treatment of these topics.

software
Many commercial packages are avail-

able to implement CART. This software

varies from requiring a fair amount
of user design and programming to
Windows-based programs to powerful
and user-friendly Graphical User Inter-
faces. Windows-based programs include
CART (www.salford-systems.com), DTREG
(www.dtreg.com), KnowledgeSEEKER (www
.angoss.com), QUEST (www.stat.wisc.edu/
�loh), PolyAnalyst (www.megaputer.com),
Random Forests (www.stat.berkeley.edu/
users/breiman), Shih Data Miner (www
.shih.be), See5/C5.0 (www.rulequest.com),
and XpertRule Miner (www.attar.com).
Modules and libraries for statistical software
packages include AnswerTree for SPSS
(www.spss.com/answertree), Multivariate Ex-
ploratory Techniques (Classification Trees)
for Statistica (www.statsoft.com), Enterprise
Miner for SAS (www.sas.com), Tree library
for S-Plus (http://lib.stat.cmu.edu/S), and
Rpart for the R-package (http://cran
.r-project.org).

case study
We constructed a regression tree to gain

explanatory and predictive insight into the
environmental drivers of fish species rich-
ness. CART begins with the entire hetero-
geneous sample of 8236 north-temperate

TABLE 1
Comparison of machine learning approaches according to a number of model characteristics

Characteristic GLM CART ANN EA

Data Requirements
Accommodate “mixed” data types Low High Low Moderate
Accommodate missing values of predictors Low High Low Low
Insensitive to monotonic transformations of predictors Low High Moderate Moderate
Robust to outliers in predictors Low Moderate Moderate Moderate
Insensitive to irrelevant predictors Low High Moderate Moderate

Modeling Process
Automation (i.e., low degree of user involvement) High Moderate Moderate Low
Transparency of the modeling process High Moderate Low Low
Ability to model nonlinear relationships Low Moderate High High
Accommodate interactions among predictors Low Moderate High High

Model Output
Explanatory insight and variable interpretability High Moderate Moderate Low
Predictive power Low Moderate High High

Software Availability and Ease-of-Use High Moderate Low Low

Classification and regression trees (CARTs), artificial neural networks (ANNs), and evolutionary algorithms (EAs) are
compared to the family of generalized linear models (GLMs) that are traditionally used in ecology. Comparisons are
generalized to include both classification and prediction problems. Values are based on Hastie et al. (2001), peer-reviewed
literature, and the personal experiences of the authors.
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lakes, consisting of both species-poor and
species-rich lakes. The goal of CART anal-
ysis is to partition the sample according to
a “splitting rule” and a “goodness of split
criteria.” Splitting rules are questions of
the form, “Is the environmental variable
less or equal to some value?” or, put more
generally, “Is X � d?” where X is an inde-
pendent variable and d is a constant within
the range of that variable. Such questions
are used to “split” the sample, and a good-
ness of split criteria compares different
splits and determines which of these will
produce the most homogeneous sub-
samples. With respect to our case study, we
wanted to disaggregate the lakes into those
with similar values of fish species richness.
As an example, Figure 2 is based on output
produced by CART (Salford Systems, Inc.)
when we set the parent node minimum to
1000 lakes and the terminal node mini-
mum to 200 lakes. The first step was to
select the optimal size of the regression
tree, defined by the number of terminal
nodes. Breiman et al. (1984) suggest the
1-SE rule, whereby the best tree is taken as
the smallest tree having an estimated error
rate that is within one standard error of the
minimum value across all trees. Using 10-
fold cross-validation, we selected a final
tree with 8 terminal nodes that exhibited a
predictive performance of R�0.65 be-
tween predicted and observed species rich-
ness (Figure 2A).

The final regression tree is shown in Fig-
ure 2C. The root node at the top of the
tree shows that the 8236 study lakes in the
initial sample contain, on average, 6.7 fish
species. The first split of the root node is
based on lake surface area. For lakes less
than or equal to 1.5 km2 in area (“Yes”
answer on the left-hand branch of the
tree), the average richness is 5.3 (n �
5511 lakes). This group is split based on
a shoreline perimeter greater than
(“No”) or less than (“Yes”) 3.5 km (aver-
age richness � 6.3 vs. 3.9 species). Of the
2322 lakes with smaller shoreline perim-
eters, the regression tree distinguishes
between two terminal nodes based on an
annual air temperature threshold of 2.2
°C: node A representing 859 lakes with

an average of 3.1 species, and node B
representing 1463 lakes with an average of
4.5 species. The parent node containing
the 3189 lakes with larger shoreline perim-
eters is split by a number of additional
criteria, including mean monthly precipi-
tation and elevation, to produce terminal
nodes C through E, which represent the
most homogeneous subgroups that can be
partitioned with the given independent
variables. For the right-hand split leading
off from the root node the same interpre-
tation is used. According to all surrogate
splits in the regression tree, we find that
surface area, shoreline perimeter, and
mean monthly precipitation are the most
important predictors of fish species rich-
ness (Figure 2B).

Artificial Neural Networks (ANNs)
background and ecological

applications
An artificial neural network (ANN), or,

more generally, a multilayer perception, is a
modeling approach inspired by the way bio-
logical nervous systems process complex in-
formation. The key element of the ANN is
the novel structure of the information pro-
cessing system, which is composed of a large
number of highly interconnected elements
called neurons, working in unity to solve spe-
cific problems. The concept of ANNs was
first introduced in the 1940s (McCulloch
and Pitts 1943); however, it was not popular-
ized until the development of the back-
propagation training algorithm by Rumel-
hart et al. (1986). The flexibility of this
modeling technique has led to its wide-
spread use in many disciplines such as phys-
ics, economics, and biomedicine.

Researchers in ecology have also recog-
nized the potential mathematical utility of
neural network algorithms for addressing
an array of problems. Previous applications
include the modeling of species distribu-
tions (Mastrorillo et al. 1997; Özesmi and
Özesmi 1999), species diversity (Guégan et
al. 1998; Brosse et al. 2001; Olden et al.
2006b), community composition (Olden
et al. 2006a), and aquatic primary and sec-
ondary production (Scardi and Harding
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Figure 2. Regression Tree and Associated Results for Predicting Fish Species Richness
Results from the regression tree for predicting fish species richness as a function of environmental charac-

teristics for 8236 north-temperate lakes in Ontario, Canada. (A) 10-fold cross-validation (solid circles) and
resubstitution (empty circles) relative error for the regression tree. The dashed line represents � 1-SE of the
relative error for the minimum regression tree (i.e., 15 nodes), and the selected tree under the 1-SE rule is
indicated by the arrow. (B) Relative importance of the environmental variables for predicting fish species
richness (note that values do not sum to 100). Variables include mean monthly air temperature (TEMP) and
precipitation (PPT), lake surface area (AREA), total shoreline perimeter (SHP), maximum depth (MAXD),
elevation (ELEV), secchi disc depth (SDD), and pH. (C) The final regression tree relating fish species richness
to lake environmental characteristics. Node precision is indicated by Root-Mean-Squared-Error.
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1999; McKenna 2005). Cornuet et al. (1996)
used a neural network to assign individuals
to appropriate taxonomic groups using mul-
tilocus genotypes. Spitz and Lek (1999) mod-
eled wildlife damage to farmlands, and
Thuiller (2003) assessed the potential im-
pacts of climate change on the distribution
of tree species in Europe. Other applications
have occurred in the fields of water resource
management (Maier and Dandy 2000), inva-
sive species biology (Vander Zanden et al.
2004), and pest management (Worner and
Gevrey 2006). A collection of ANN appli-
cations in ecology is presented in Lek and
Guégan (2000), Recknagel (2003), and
Özesmi et al. (2006), as well as in special
issues of Ecological Modelling and Ecological
Informatics (e.g., Recknagel 2001; Park and
Chon 2007).

methodology
There are many types of supervised and

unsupervised learning methods for ANNs
(Bishop 1995). Here we describe the most
frequently used method in ecology: the
one hidden-layer, supervised, feedforward
neural network trained by the back-
propagation algorithm. These neural net-
works are popular in the ecological litera-
ture because they are considered to be
universal approximators of any continuous
function (Hornik et al. 1989). In this sec-
tion, we will discuss neural network archi-
tecture and the back-propagation algo-
rithm used to parameterize the network,
and we will describe the various methods
available to quantify variable importance.

Network architecture refers to the num-
ber and organization of the neurons in the
network (see Figure 3 for the general anat-
omy of a neural network). In the feedfor-
ward network, neurons are organized in an
input layer, a hidden layer, and an output
layer, with each layer containing one or
more neurons. Each neuron is connected
to all neurons in adjacent layers with an
axon; however, neurons within each layer
and in nonadjacent layers are not con-
nected. The input layer typically contains p
neurons, one neuron representing each of
the independent variables x1 through xp.
The number of neurons in the hidden

layer can be selected arbitrarily or deter-
mined empirically by the investigator to
minimize the trade-off between bias and
variance (Geman et al. 1992). The addi-
tion of hidden neurons increases the abil-
ity of a network to approximate any under-
lying relationship among the variables, i.e.,
resulting in reduced bias, but also in-
creases the variance of predictions due to
overfitting the data. Although mathemati-
cal derivations exist for selecting an opti-
mal design (see Bishop 1995), in practice it
is common to train networks with different
numbers of hidden neurons and to use the
performance on a test data set to choose
the network that performs the best. For
continuous and binary response variables,
the output layer commonly contains one
neuron, but the number of output neu-
rons can be greater than one if there is
more than one response variable or if the
response variable is categorical (i.e., a sep-
arate neuron for classifying observations
into each category). Additional bias neu-
rons with a constant output are also added
to the hidden and output layers, although
this is not mandatory, as these neurons
play a similar role to the intercept term in
general linear regression.

Each neuron in the network has an “ac-
tivity level” that is defined by the value of
the incoming signals received from the
other neurons connected to it. In turn,
each axon in a network is assigned a “con-
nection weight” that reflects the overall in-
tensity of the signal it transmits (i.e., input

Figure 3. The General Anatomy of an
Artificial Neural Network
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to hidden or hidden to output). The activ-
ity levels of the input neurons are defined
by the values of the predictor variables
(Figure 3). The state of each hidden neu-
ron is evaluated locally by calculating the
weighted sum of the incoming signals from
the neurons of the input layer, which is
then subjected to an activation function,
i.e., a differentiable function of the neu-
ron’s total incoming signal from all input
neurons. The same procedure described
above is repeated for the axon signals from
the hidden layer to the output layer.

Training the neural network typically in-
volves an error back-propagation algo-
rithm that searches for an optimal set of
connection weights that produces an out-
put signal with a small error relative to the
observed output (i.e., minimizing the fit-
ting criterion). For continuous output vari-
ables, the most commonly used criterion is
the least-squares error function, whereas
for dichotomous output variables, the most
commonly used criterion is the cross en-
tropy error function, which is similar to
log-likelihood (Bishop 1995). The algo-
rithm adjusts the connection weights in a
backwards fashion, layer by layer, in the
direction of steepest descent, thus mini-
mizing the error function (this is also
called gradient descent). The training of
the network is a recursive process where
observations from the training data are en-
tered into the network in turn, each time
modifying the input-hidden and hidden-
output connection weights. This proce-
dure is repeated with the entire training
dataset (i.e., each of the n observations) for
a number of iterations or epochs until a
stopping rule (e.g., error rate) is achieved.
Prior to training the network, the indepen-
dent variables should be converted to
z-scores (0 to 1) in order to standardize the
measurement scales of the inputs into the
network.

Recent efforts have focused on the devel-
opment of methods for understanding the
explanatory contributions of the indepen-
dent variables in ANNs (Olden and Jackson
2002b). This was, in part, prompted by the
fact that neural networks were considered a
“black box” approach to modeling ecologi-

cal data because of the perceived difficulty in
understanding their inner workings. Recent
studies in the biological sciences have pro-
vided a variety of methods for quantifying
and interpreting the contributions of the in-
dependent variables in neural networks (see
Olden and Jackson 2002b; Gevrey et al. 2003;
Olden et al. 2004). These approaches utilize
the fact that the connection weights between
neurons are the linkages between the inputs
and the output of the neural network, and,
therefore, the relative contribution of each
independent variable depends on the mag-
nitude and direction of these connection
weights. Input variables with larger connec-
tion weights represent greater intensities of
signal transfer; they are more important in
predicting the output compared to variables
with smaller weights. Negative connection
weights reduce the intensity or contribution
of the incoming signal and negatively affect
the output, whereas positive connection
weights increase the intensity of the incom-
ing signal and positively affect the output.
One method, the connection weight ap-
proach, uses the product of the input-hidden
and hidden-output connection weights to
determine variable importance (Olden et al.
2004). Other approaches include Garson’s
algorithm (Garson 1991), partial derivatives
(Dimopoulos et al. 1995), a sensitivity analy-
sis to determine the spectrum of input vari-
able contributions in the neural network
(Lek et al. 1996), and a number of pruning
algorithms (Bishop 1995), including a ran-
domization test to remove small connection
weights (Olden and Jackson 2002b). Al-
though these approaches can determine
the overall influence of each independent
variable, the interpretation of interactions
among the variables requires the direct
examination of the network connection
weights (e.g., Özesmi and Özesmi 1999;
Olden and Jackson 2001).

strengths and weaknesses
There are both advantages and disadvan-

tages to neural networks, and, to discuss
this subject properly, we would have to
look at each individual type of network. In
reference to a back-propagation feedfor-
ward approach, ANNs have a number of
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advantages over traditional parametric ap-
proaches, including: (1) the ability to model
nonlinear associations; (2) no requirement
of specific assumptions concerning the dis-
tributional characteristics of the indepen-
dent variables (i.e., nonparametric); and (3)
the accommodation of variable interactions
without a priori specification (Table 1).
ANNs also provide a much more flexible way
of modeling ecological data. Model com-
plexity can be varied by altering the transfer
function or the inner architecture of the net-
work through an increase in the number of
hidden neurons or layers to enhance data
fitting, or by increasing the number of out-
put neurons to model multiple ecological
response variables, such as multiple species
(e.g., Özesmi and Özesmi 1999) or entire
communities (e.g., Olden 2003; Olden et al.
2006a). It is this flexibility that has likely led
to the increased popularity of neural net-
works in ecology.

Yet ANNs are not without limitations, and
there are some specific issues potential users
should be aware of. First, neural network
models are more complicated to implement,
mainly for the reason that the optimization
of the network architecture is iterative and is,
thus, time consuming. However, this process
can be automated and relies on computer
time rather than human time to optimize.
Second, the performance of a network can
be sensitive to the random initial connection
weights assigned to the network prior to
training. To overcome this, it is recom-
mended that multiple networks based on dif-
ferent initial connection weights be con-
structed and that a final network that is
deemed representative of the population of
models be selected. Third, although ANNs
are no longer simplistically viewed as a black
box approach to modeling data (Olden and
Jackson 2002b), the model-building process
is still far less transparent than that of more
traditional methods, and the ability to ex-
plore direct and interactive variable contri-
butions with ANNs will always be more com-
plicated (Table 1).

software
Until recently, the ability of researchers

to use neural networks was limited to those

with computer programming experience.
This is no longer the case. A number of
Windows-based programs, modules for
commonly used software packages, and li-
braries for different programming lan-
guages are now available. Windows-based
programs include BrainMaker (www.calsci
.com),EasyNN-plus(www.easynn.com),Neuro-
Solutions (www.neurosolutions.com), Neural-
Ware (www.neuralware.com), and SNNS
(http://www-ra.informatik.uni-tuebingen.de/
SNNS/). Modules and libraries for statistical
software packages include Neural Connection
for SPSS (www.spss.com), Neural Network
moduleforStatistica(www.statsoft.com),Neuro-
Solutions for Excel (www.neurosolutions
.com), NeuroXL Classfier for Excel (www
.neuroxl.com), Enterprise Miner for SAS
(www.sas.com), NeuroSolutions for MatLab
(www.neurosolutions.com), Neural Network li-
brary for S-Plus (http://lib.stat.cmu.edu/S/),
and Feed-forward Neural Networks for the R-
package (http://cran.r-project.org).

case study
ANN methodology begins with a fully con-

nected network composed of axons with
completely random connection weights that
link the environmental variables (repre-
sented by input neurons) to species richness
(represented by the output neuron) via the
hidden layer of neurons. In this case
study, the back-propagation algorithm
modified the connection weights in an it-
erative fashion to maximize the match be-
tween predicted and observed levels of spe-
cies richness in the study lakes. As an
example, Figure 4 is based on output pro-
duced by using the Neural Network mod-
ule in MatLab (Mathsoft Inc.) when we set
the initial random weights to range be-
tween -0.3 and 0.3 and the maximum num-
ber of iterations for model convergence to
1000. Optimal network configuration (i.e.,
optimal number of neurons in the hidden
layer of the network) was determined by
comparing the performances of different
10-fold cross-validated networks with 1 to
20 hidden neurons in order to choose the
number that produced the greatest net-
work performance (Figure 4A). This re-
sulted in a network with 8 input neurons (8
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environmental variables), 5 hidden neu-
rons, and 1 output neuron (i.e., species
richness), and which exhibited a predictive
performance of R�0.70 between predicted
and observed species richness.

The final neural network is presented in
Figure 4C. In this figure, the relative magni-
tudes of the connection weights are repre-
sented by line thickness (i.e., thicker lines
represent greater weights) and line type rep-

Figure 4. Artificial Neural Network and Associated Results for Predicting Fish Species Richness
Results from the artificial neural network predicting fish species richness as a function of environmental

characteristics for 8236 north-temperate lakes in Ontario, Canada. (A) 10-fold cross-validation (solid circles,
bars represent �/- 1-SE) and resubstitution (empty circles) relative error for the ANN. The selected network
is indicated by the arrow. (B) Relative importance of the environmental variables for predicting fish species
richness, where solid and empty bars indicate positive and negative relationships, respectively. (C) The artificial
neural network relating fish species richness to lake environmental characteristics. Line thickness is propor-
tional to the magnitude of the axon connection weight, and line type indicates the direction of the interaction
between neurons: solid line connections are positive (excitators) and dashed line connections are negative
(inhibitors). Only statistically significant connection weights are presented (P � 0.05). (Variable codes are
presented in the Figure 2 caption.)
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resents the direction of the weights (i.e.,
solid lines represent positive signals and
dashed lines represent negative signals).
Positive effects of input variables are de-
picted by positive input-hidden and pos-
itive hidden-output connection weights,
or negative input-hidden and negative
hidden-output connection weights. Nega-
tive effects of input variables are de-
picted by positive input-hidden and neg-
ative hidden-output connection weights,
or by negative input-hidden and positive
hidden-output connection weights. Thus,
the multiplication of the two connection
weight directions (positive or negative) in-
dicates the effect that each input variable
has on the response variable. Interactions
among predictor variables can be identi-
fied as input variables with opposing con-
nection weights entering the same hidden
neuron.

Individual and interacting influences of
the environmental variables on network
predictions were examined after we re-
moved nonsignificant, small connection
weights (based on P � 0.05) using the ran-
domization approach of Olden and Jack-
son (2002b). The resulting network shows
that species richness is positively correlated
with mean monthly air temperature via
hidden neurons A and B, and negatively
correlated with mean monthly precipita-
tion via hidden neurons A and D. The
neural network also predicts fish species
richness to be greatest in large and deep
lakes (neuron C) with high shoreline pe-
rimeters (neurons B, C, and D). Focusing
on hidden neuron B, we see that shoreline
perimeter and lake elevation interact such
that the positive influence of shoreline pe-
rimeter (reflecting greater littoral zone
availability) on species richness (i.e., two
negative connection weights) decreases
with increasing lake elevation. Figure 4C
illustrates the utility in eliminating those
connection weights that are small and,
therefore, contribute little to network pre-
dictions. In this case, we removed 23 out of
the 45 possible connection weights. Sum-
ming across all connection weights illus-
trates that shoreline perimeter (positive),
lake area (positive), and mean monthly

precipitation (negative) exhibited the stron-
gest influences on predictions of species
richness from the neural network (Figure
4B).

Evolutionary Computation: Genetic
Algorithms and Genetic

Programming

background and ecological
applications

Evolutionary computation (EC) includes
a number of machine learning approaches
that can be classified as stochastic optimi-
zation tools. In general, these techniques
use an aspect of randomization to search
for global model optima. More specifically,
EC is based on the process of evolution in
natural systems and was inspired by a di-
rect analogy to sexual reproduction and
Charles Darwin’s principle of natural selec-
tion (Holland 1975; Goldberg 1989). EC
approaches include simulated annealing,
evolutionary programming, evolutionary
strategies, genetic algorithms, and genetic
programming. Because they have been
more frequently used in ecological studies,
we have confined our discussion here to
genetic algorithms (GAs) and genetic pro-
gramming (GP). In a strict interpretation,
GAs refer to the general purpose search
algorithms introduced by Holland (1975),
which create population-based models that
use selection and recombination operators
to generate new sample points in a search
space (Mitchell 1998). In contrast, GP re-
fers to solutions to the problem in question
that take the form of modular computer
programs. Running each GP provides a
solution to the problem (Koza 1992),
whereas, in GAs, the solution is repre-
sented by fixed-length character strings
(Mitchell 1998). These strings are then in-
terpreted by one or more functions to pro-
duce solutions. We will discuss the me-
chanics of the two approaches in more
detail in the following sections.

Ecological applications of GAs and GP
have been more limited than most ML
techniques, but they are growing in popu-
larity in the natural sciences. D’Angelo et
al. (1995) used GAs to model the distribu-
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tion of cutthroat and rainbow trout as a
function of stream habitat characteristics
in the Pacific Northwest of the United
States, and they were also applied by Ter-
mansen et al. (2006) to model plant spe-
cies distributions as a function of both cli-
mate and land use variables. Genetic
programming was used by McKay (2001)
to develop spatial models for marsupial
density, by Chen et al. (2000) to analyze
fish stock-recruitment relationship, and by
Muttil and Lee (2005) to model nuisance
algal blooms in coastal ecosystems. Ecolo-
gy’s recent interest in EC has been driven,
in large part, by the introduction of the
Genetic Algorithm for Rule-Set Prediction
(GARP) for predicting species distribu-
tions (Stockwell and Noble 1992). GARP
uses several rule-building methods to build
heterogeneous rule sets that describe the
ecological niche of a species to environ-
mental data (Stockwell and Peters 1999).
The resulting niche model is then pro-
jected back onto the landscape to generate
a prediction of potential distribution. To
date, GARP has been used to model the
spatial distribution of numerous species,
including the habitat suitability of threat-
ened species (e.g., Anderson and Martı́nez-
Meyer 2004) and invasive species (e.g., Peter-
son and Vieglais 2001; Peterson 2003; Drake
and Lodge 2006), as well as the geography of
disease transmission (Peterson 2001). Fur-
ther advances in ecological niche modeling
using EC approaches continue to be devel-
oped, such as the WhyWhere algorithm ad-
vocated by Stockwell (2006) (but see Peter-
son 2007). Broader applications of EC
methods include their use in conservation
planning for biodiversity (Sarkar et al. 2006).

methodology
The general anatomies of a genetic algo-

rithm and a genetic program are pre-
sented in Figure 5A. In principle, GAs and
GP operate on populations of competing
solutions to a problem that evolve over
time to converge to an optimal solution
(Holland 1975). The solutions are loosely
represented as “chromosomes” composed
of component “genes.” Both approaches
involve four steps. First, random potential

solutions (chromosomes) to the problem
are developed. Second, the potential solu-
tions are altered using the processes of re-
production, mutation, and crossover. Third,
the new solutions are evaluated to determine
their fitness (i.e., how well they solve the
problem). Fourth, the most fit or best solu-
tions are selected. Steps two through four,
which can be seen as constituting a “genera-
tion of solutions,” are then repeated using
the solutions selected in step four until a
stopping criterion is reached. In this way,
solutions to a problem evolve through the
multiple iterations or generations of the
modeling process (Haefner 2005).

Although the principles behind GAs and
GP are similar, as mentioned above, the
structures of the models are fairly different.
In GAs, the components of a solution (i.e.,
model parameters) are represented as genes
on single-vector chromosomes (Figure 5B).
The chromosomes change such that solu-
tions evolve over subsequent generations in
the model. In each generation, there are two
opportunities for chromosomal change: re-
combination via crossover and random mu-
tation. Recombination mimics sexual recom-
bination in which genetic material from
parents is combined to produce related, but
different, offspring. First, chromosomes are
paired up, often at random. Next, a point
along the length of the chromosomes is se-
lected, again at random, and portions of the
paired chromosomes are exchanged in an
event called crossover (Mitchell 1998). The
resulting new chromosomes are regarded as
offspring. Further change can occur through
mutation events. In each generation of chro-
mosomes, a mutation can occur changing a
value from 1 to 0 or vice versa at any individ-
ual bit on a chromosome. Mutation acts as
an insurance policy against the permanent
loss of any simple gene, and it enhances the
ability of the genetic algorithm to find the
optimal solution.

Recombination and mutation act to create
new generations of different solutions. Al-
though we have provided a basic description
of these two events, their implementation
can vary (Mitchell 1989; Haefner 2005). For
example, recombination can be a mandatory
event for all chromosomes and, thus, all par-
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Figure 5. The General Anatomy of a Genetic Algorithm and a Genetic Program
(A) Schematic illustrating the process of evolutionary computation. (B) Illustration of a genetic algorithm

(GA) where each individual (4 in total) is represented by a chromosome containing a binary string of 5 genes
(parameter 0 or 1). F indicates the fitness of each individual. Crossovers occur between underlined sections of
the chromosome, and the boxed value represents a mutation event. (C) Illustration of a genetic program (GP)
where each individual is represented by a tree-like chromosome of genes representing values and operators.
Independent variables 1 and 2 are represented by v1 and v2, respectively. Dashed lines indicate crossover points
in the parents, and dashed circles represent mutation events. The underlined statements represent the
corresponding regression equations for each individual in the population at t � n�1 (i.e., after crossover and
mutation events).
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ent chromosomes can be replaced by their
offspring, or some proportion of the popu-
lation can reproduce and be replaced while
the rest of the chromosomes remain un-
changed. In addition, other events can be
used to alter the chromosomes. For exam-
ple, inversions can be used to reorder por-
tions of a chromosome (Holland 1975). The
rates at which mutations and crossover
events occur can often be set by the modeler.

After recombination and mutation are
completed, the fitness of each chromo-
some is determined using a fitness func-
tion. The function takes the genes of the
chromosomes as inputs and produces a
value or condition that is then compared
to an optimal condition (Holland 1975).
The “distance” between the optimal condi-
tion and that produced by the chromo-
some’s solution represents its fitness or,
put another way, its prediction error. A
selection event then takes place in which
the chromosomes with higher fitness are
selected to comprise the next generation.

As a simple example, consider the prob-
lem of selecting the parameters for a re-
gression equation with five variables. The
chromosomes would each have five genes
corresponding to the five parameters. These
five genes are represented on the chromo-
somes as bit strings. For each generation in
the model, recombination and mutation
events would produce new sets of chromo-
somes with different parameters for the re-
gression equation. These new sets of param-
eters could be evaluated by plugging them
into a predetermined regression equation
and calculating the mean squared error us-
ing the data for which the regression was
being developed. Chromosomes that pro-
duced lower mean squared errors would be
considered more fit than chromosomes with
higher mean squared errors.

The chromosomes in GP are modular
computer programs in which each module
can be seen as a gene (Koza 1992). These
chromosomes have a tree-like structure
that is in turn interpreted as an equation
or a list of commands (Figure 5C). Each
node in the tree has a functional value that
requires additional arguments, and each
terminal branch has a terminal value or

command that does not require additional
arguments. As an example, again consider
a regression equation. The functional val-
ues can be addition, subtraction, or divi-
sion, and terminal values can be numeric
(parameters in the regression model) or
variables (explanatory variables). Figure
5C shows the tree-like structure of such a
chromosome (program) and the corre-
sponding regression equation. As in GAs, a
population of chromosomes is evolved
through generations of recombination and
crossover events. Mutations can occur at
any functional value or any terminal value.
Crossover breaks can occur at any node in
the tree.

In summary, during successive genera-
tions in both GAs and GP, the initial pop-
ulation of chromosomes (i.e., strings of
problem solutions in GAs or modular pro-
grams in GP) advances toward a fitter pop-
ulation by reproduction among members
of the previous generation. Selection of
the fittest chromosomes makes sure that
only the best chromosomes can crossover
or mutate, thus advancing their opportunity
to find the best solution to the problem. We
refer the reader to Haefner (2005) for an
overview of evolutionary computation ap-
proaches, Goldberg (1989) and Mitchell
(1998) for introductory texts on the subject,
and Holland (1975) and Koza (1992) for a
more advanced treatment of GAs and GP,
respectively.

strengths and weaknesses
Evolutionary computation has a number

of advantages over traditional ecological
modeling approaches. First, because EC
approaches perform extensive optimiza-
tion searches, they are able to model non-
linear data and also may be appropriate for
situations involving uneven sampling and
small sample sizes. This optimal searching
amounts to a bottom-up inductive analysis
as opposed to the top-down deductive ap-
proach of most traditional predictive ecolog-
ical modeling techniques. A second and re-
lated advantage of EC is that it provides
ecologists with the ability to model complex
relationships using a broad range of model
structures and model fitting approaches (Ta-
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ble 1). Theoretically, this means that one can
have a large amount of control over the de-
sign of the models and the execution of the
algorithm; however, the ability to exert this
flexibility is often limited by the available
software. The GARP program perfectly illus-
trates the flexibility of EC approaches. As
mentioned above, GARP uses a set of rules to
define species distribution. This rule set may
be composed of many different functions or
relationships (e.g, logistic functions, Boolean
operators), which are assembled in the mod-
eling process. Although the GARP algorithm
has a fixed set of rules, in designing a genetic
algorithm or genetic program to address a
given problem, one can design one’s own set
of potential functions or relationships. A
third advantage of EC approaches is that
they were designed as stochastic optimiza-
tion tools with a relatively broad application
in mind.

Nonetheless, EC approaches are not the
best techniques for all problems. First, many
readily available statistical techniques per-
form as well as, if not better than, GAs at
developing regression and classifications sys-
tems. GARP, in particular, has been shown to
overpredict species distributions relative to
other modeling approaches (Elith et al.
2006; Lawler et al. 2006). Second, there is
little theory available to explain GP and little
guidance for selecting model parameters.
Therefore, the onus, more so than with most
statistical approaches, is on the researcher to
develop the potential range of model struc-
tures. Developing more complex models re-
quires more work on the part of the modeler
(Table 1).

There are also a few specific limitations of
the two approaches discussed here that are
worth mentioning. One specific limitation of
genetic algorithms is that they use fixed-
length chromosomes, which can limit the
potential range of solutions. In our example
of the regression equation with five parame-
ters, we were limited in that we had to set the
number of parameters in advance. Thus, we
were unable to evolve a solution with, for
instance, seven or eight parameters. Genetic
programming does not have this limitation;
the length of a solution is limited only by
available computer memory or by the soft-

ware used to do the modeling. Genetic pro-
gramming, however, also has a distinct draw-
back. The solutions obtained from genetic
programs are often too complex to easily
interpret because they can be long strings of
parameters or equations with complicated
operators (we will revisit this problem in the
case study to follow). Even with some of the
more well-developed software, deciphering
the computer code that produces the mod-
els or understanding the significance of the
complex relationships that the model de-
fines can be difficult (Table 1).

software
Although much of the available evolution-

ary computation software requires some
computer programming skill, a number of
more user-friendly tools have been devel-
oped. Discipulus, which is used in our case
study, is available for Windows platforms
(http://www.rmltech.com/). The GARP pro-
gram for Windows is available at http://www
.nhm.ku.edu/desktopgarp/, EJC is an “evolu-
tionary computation research system”
developed at George Mason University
(http://cs.gmu.edu/�eclab/projects/ecj/),
and Groovy Java Genetic Programming (JG-
Prog) is available from http://jgprog.source
forge.net/. At least two packages are available
for R-package, including gafit and genalg
(http://cran.r-project.org). And finally, there
are a number of repositories for computer
code for evolutionary computation (e.g.,
http://www.geneticprogramming.com).

case study
We used genetic programming to model

species richness in the north-temperate lakes
dataset. The modeling was done with the
program Discipulus, which is easy to use soft-
ware designed to efficiently apply genetic
programming to regression and classifica-
tion problems. Discipulus uses both muta-
tions and crossover events within a popula-
tion of computer programs to evolve
solutions. We used the program’s default set-
tings, consisting of a population of 500 pro-
grams, a mutation rate of 95%, and a cross-
over frequency of 50%. Each program
consists of modules containing both vari-
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ables and operators. Discipulus allows the
use of 11 different types of operators includ-
ing addition, multiplication, subtraction, di-
vision, trigonometric, and Boolean opera-
tors. We used a total of 23 different potential
operators to model fish species richness. To
build and evaluate the models, we randomly
divided the lakes dataset into three roughly
equal parts corresponding to training, valida-
tion, and applied datasets. The training and
validation datasets were used in model build-
ing and the applied dataset was used to
provide a semi-independent assessment of
model performance.

The best performing model converged
after 9000 generations of the algorithm
(Figure 6A) and had an R�0.69 between
predicted and observed species richness
for the semi-independent applied dataset.
The two most influential variables in the
top 30 models were lake area and shoreline
perimeter, followed by mean monthly pre-
cipitation and air temperature (Figure 6B).
As discussed previously, one of the disadvan-
tages of using genetic programs is that the
models they produce are often large and
difficult to interpret. The model produced
in our case study was no exception. For that
reason, we have not provided any details
about the structure of the GP model.

Conclusion
Machine learning approaches can facili-

tate greater understanding and prediction in
the ecological sciences. The purpose of this
review is to broaden the exposure of ecolo-
gists to ML by illustrating how CART, ANN,
and EC can be used to address complex
problems. In doing so, we hope to have
introduced ecologists to a set of viable al-
ternatives to more traditional statistical ap-
proaches. Although the application of ML
approaches in ecology has increased in re-
cent years, the growth has been relatively
modest compared to other disciplines, and
there remains a good degree of skepticism
with respect to its role in quantitative anal-
yses. Currently, the majority of ecolo-
gists lack the computational background
needed to operate the software that imple-
ments these approaches (Fielding 1999),
and, as a result, many ecologists may be
hesitant to invest their time in learning
extensive program code language and syn-
tax. With the increasing popularity of these
approaches, however, more user-friendly
software is rapidly being developed. Such
software (examples of which are listed
throughout this review) will increase ML
usage and awareness among ecologists and

Figure 6. Genetic Program and Associated Results for Predicting Fish Species Richness
Results from the genetic program predicting fish species richness as a function of environmental character-

istics for 8236 north-temperate lakes in Ontario, Canada. (A) Cross-validation relative error for the GP
according to mean-squared-error. (B) Average relative importance of the environmental variables for predict-
ing fish species richness based on the top 30 GPs. (Variable codes are presented in the Figure 2 caption.)
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promote the advancement of these analyt-
ical methods.

Machine learning methods are powerful
tools for prediction and explanation, and
they will enhance our ability to model eco-
logical systems. They are not, however, a
solution to all ecological modeling prob-
lems. No one ML approach will be best
suited to addressing all problems nor will
ML approaches always be preferable to tra-
ditional statistical approaches. Although
ML methods are generally more flexible
with respect to modeling complex relation-
ships and messy datasets, the models they
produce are often more difficult to inter-
pret, and the modeling process itself is of-
ten far from transparent.

Although ML technologies strengthen
our ability to model ecological phenom-
ena, advances in understanding the funda-
mental processes underlying those phe-
nomena are clearly critical as well. Some
argue that ML methods attempt to elimi-
nate the need for ecological intuition dur-
ing the data analysis process; we strongly
disagree. Human intuition cannot be en-
tirely eliminated because the analyst must

specify how the data are to be represented
and what mechanisms will be used to
search for a characterization of the prob-
lem. In this respect, ML should be viewed
as an attempt to automate parts of the
modeling process, not replace it (Olden et
al. 2006b). We hope our review of machine
learning methods will allow more ecolo-
gists to add these tools to their repertoire
of quantitative expertise, and that it will
provide them with a basis for making in-
formed decisions about applying machine
learning approaches or more traditional
statistical approaches in their future mod-
eling endeavors.
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