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Abstract

Context Forest landscapes worldwide are shaped by

abiotic drivers such as fire, windstorms, and drought,

but also by biotic drivers like insect pests and

pathogens. Although the effects of such drivers on

forest dynamics have been studied extensively,

knowledge of the interactions between insect pests

and other drivers of change is still coarse and

fragmented. Indeed, new invasive insect species and

global change may lead to novel interactions and

produce impacts on forest ecosystems never before

experienced.

Objectives We aimed to review the mechanisms

underlying interactions between insect pest outbreaks

and other forest disturbances, identify interactions

emerging from current disturbance dynamics, and

highlight the role of simulation models in exploring

these interactions in a dynamic, mechanistic, and

spatially explicit manner.

Methods We reviewed the state of the science

regarding interactions between insect pests and other

forest disturbances, collecting a set of 216 scientific

articles.
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Results Most studies focused on the interaction

between insect outbreaks and fire, whereas interac-

tions between insect pests and drought, forest man-

agement or forest diseases received much less

attention. Although we identified some trends in how

interactions were manifested, interactions were not

more commonly found at particular spatial or temporal

scales. Relatively few studies used simulation models

to explore interactions between disturbances and very

few studies explored multiple interactions.

Conclusions Interactions between pests and other

forest disturbances play critical roles in driving forest

dynamics. The effects of these interactions are likely

to increase in the face of continuing global change.

Keywords Simulation modeling � Outbreak � Fire �
Drought � Climate change � Landscape dynamics

Introduction

Forest disturbances such as fire, drought, windstorms,

landslides, disease, and insect outbreaks are key

drivers of change in forested landscapes. Disturbances

modulate landscape dynamics by modifying forest

composition and structure, influencing forest ecosys-

tem functioning and resource availability (White and

Pickett 1985; Seidl et al. 2017), and facilitating

adaptation to new environmental conditions (Thom

et al. 2017). Despite the essential role that natural

disturbances play in forest ecosystem functioning and

composition, our understanding of their future impacts

remains limited due to the complex feedbacks that

exist between disturbances and global change (Dale

et al. 2001; Turner 2010). For instance, ongoing

changes in the global economy, land use, and climate

change may lead to more extreme disturbances (such

as windstorms, floods, and wildfires) with yet

unknown consequences for forest landscapes (Weed

et al. 2013; Duane and Brotons 2018). Such changes

may also result in novel disturbance caused by

invasive species introduced via international trade

(Brockerhoff et al. 2006; FAO 2008; van Lierop et al.

2015).

Insect pests are one of the main agents shaping

forest landscapes, affecting almost 35 million ha

annually, mainly in boreal and temperate biomes

(van Lierop et al. 2015). Although many native pests

and diseases are integral agents of forest ecosystems,

high-intensity outbreaks can have adverse effects on

tree growth and survival (van Lierop et al. 2015). The

extent and subsequent economic and ecological costs

of pest outbreaks have increased in recent decades as

world trade has facilitated the spread of invasive

species (Hulme 2009; Turner 2010).

Insect pests are highly sensitive to global change.

New environmental conditions resulting from changes

in temperature, precipitation, and drought can alter

insect development and reproduction (Ayres and

Lombardero 2000; Kingsolver et al. 2011), and hence

population dynamics and outbreaks. These changes

may also enable native and invasive insect pests to

spread to areas currently free of such outbreaks

(Cullingham et al. 2011). Changes in land use can

also influence insect population distributions and local

viability (Rosenberger et al. 2017). Although the

impact of direct climate-pest and land-use-pest have

been examined, we know less about the indirect

consequences of insect pests on forest ecosystems

through their interactions with other disturbances

(Ayres and Lombardero 2000; Raffa et al. 2008;

Hessburg et al. 2015).

A deeper understanding of forest disturbance

dynamics and their interactions is required to better

forecast how global change will affect forest ecosys-

tems (Buma and Wessman 2011). Insect outbreaks

have complex relationships with other disturbances,

and can be affected by fire (Parker et al. 2006; Chou

et al. 2010; Hicke et al. 2012; Jenkins et al. 2014),

drought (Sangüesa-Barreda et al. 2015; Temperli et al.

2015), windstorms (Reyes and Kneeshaw 2008;

Potterf and Bone 2017), forest management (Bauce

and Fuentealba 2013; Rosenberger et al. 2017),

pollution (Roth et al. 1998; Agrell et al. 2005), and

other pests or diseases affecting the forest (Jones et al.

2015; Borkowski and Skrzecz 2016). Many studies

have explored the interactions between insect pests

and other disturbance agents (Colgan and Erbilgin

2010; Day and Pérez 2013; Gitau et al. 2013;

Anderegg et al. 2015; Millar and Stephenson 2015;

Kolb et al. 2016; Agne et al. 2018; Leverkus et al.

2018). However, to date, no global synthesis exists

that integrates such interactions with insect pests

across different agents and regions, analyzing how

global change may influence these interactions in the

near future (Seidl et al. 2011), or how alterations in

current ecosystems may lead to novel interaction
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regimes (Turner 2010). Such a synthesis is challenged

by the diversity of insect feeding strategies and

outbreak dynamics, the multiple ways in which one

can characterize insect outbreaks (e.g., severity,

frequency, extent), and the multiple spatiotemporal

scales at which disturbance interactions occur (Joseph

et al. 2001; Hanula et al. 2002; Meigs et al.

2015, 2016; Kelsey and Westlind 2017a).

Ecological models are essential for improving our

understanding of interactions between pests and other

disturbances in the face of rapid global change.

Although empirical models (based on statistical rela-

tionships among drivers and a response variable;

Table 1) are widely used, they can only model

observed dynamics and are therefore limited in their

capacity to make predictions in novel contexts. In

contrast, simulation models (mechanistic models

based on a combination of theoretical understanding

and mathematical/empirical information; Gustafson

and Keene 2014) can be designed to include the effects

of uncertain, multiple interacting disturbances char-

acterized by cumulative effects, non-linear dynamics,

cross-scale interactions and, most importantly, with

the potential to capture unobserved dynamics (Clark

and Gelfand 2006; Ager et al. 2007; Taylor et al. 2009;

Baker and Robinson 2010; James et al. 2011; Keane

et al. 2015; Maroschek et al. 2015; Leite et al. 2018).

Such simulation models are particularly appropriate

methods to assess changes in insect species ranges,

predict novel insect outbreaks, and anticipate host–

insect relationships under novel environmental con-

ditions (Taylor et al. 2009; Maino et al. 2016; Barbet-

Massin et al. 2018).

Here we present a systematic review of spatiotem-

poral interactions between insect pest outbreaks and

other forest disturbances. We aim to: (1) detail the

processes that determine how insect pest outbreaks

interact with other disturbances, while highlighting the

main sources of variability in such interactions; (2)

identify current and potential future interactions

between insect pests and emerging disturbances in

the face of global change; and (3) discuss the role of

simulation models as a tool for studying both current

and novel forest disturbance interactions.

Methods

We searched for publications that examined interac-

tions between insect pests and other forest distur-

bances. We used the Web of Science, Scopus, and

Google Scholar databases to identify articles pub-

lished between 1990 and 2019 that contained the

following words in the title, abstract, or keyword:

(Insect) AND (outbreak* OR defoliat* OR infest* OR

pest OR bio* disturb* OR epidemic*) AND (forest*

OR tree* OR landscape* OR stand*) AND (*fire* OR

*burn* OR *drought* OR *logging* OR forest

management OR harvest* OR *wind* OR hurricane

OR *snow* OR *storm* OR *flood* OR *slide* OR

disease OR *pollution*) AND (interact*).

We defined an interaction between disturbances as

a direct or indirect relationship in which one distur-

bance affects the likelihood, extent, severity, or

impacts of another. These effects could be either

synergistic (a disturbance favors the likelihood or

accentuates the impact of a subsequent disturbance) or

antagonistic (a disturbance hinders, reduces, or pre-

vents the likelihood or impact of a subsequent

disturbance). We did not explicitly include climate

change as a disturbance, but its effect was implicit in

the influence of insect pest outbreaks, drought

episodes, wildfire, wind, and flooding. Papers that

were out of our thematic scope (e.g., studies focusing

on agricultural instead of forest pests, or that studied

multiple disturbances or climate effects on insect pests

but not the interactions between them) were excluded.

Finally, we included those articles that considered

forest management and silvicultural interventions as

drivers of change in forests, but not those that analyzed

pest control via forest management. A final pool of

216 papers was selected.

We applied a common analysis scheme to all the

reviewed studies. For each paper, we recorded infor-

mation about the study area (at continental level),

insect species examined, feeding guild (sensu Coviella

and Trumble 1999; Labandeira 2013), disturbance

agents involved, occurrence or lack of interaction,

order of the disturbances, type of response, method-

ological approach, spatial and temporal scale, ecolog-

ical explanation, and inferences regarding possible

future trends of the interaction when applicable

(Table 1). We categorized publications as being either

empirical analyses or simulation modeling studies (see

Table 1; Gustafson and Keene 2014). For simulation
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modeling studies, we also listed the modeling

approach, the explanatory variables, the data source,

and the projection scenarios considered. Information

about disturbance interaction impacts (including the

mechanisms of community between species, the

immediate and indirect consequences of the distur-

bance, possible regeneration after impact, etc.) was not

always available in the reviewed papers or was

difficult to compare. Thus, we calculated summary

statistics (frequencies) regarding the above-mentioned

variables as a proxy for the incidence of interactions in

ecosystems. Finally, studies that found interactions

between disturbances were coded with ‘‘1’’, and those

that failed to find such interactions with ‘‘0’’. We then

used logistic regression analyses with the presence of

an interaction as the binary response variable and

several predictors considered to influence the distur-

bance interactions (i.e., disturbance agent, order of the

disturbance, type of response, insect feeding guild,

spatial scale, and temporal scale) as explanatory

variables. Regression models were fitted using the

glm function in R (R Core Team 2019) and signif-

icance level was considered at p-value\ 0.05.

Differences in the number of publications on

disturbance interaction among continents could reflect

either true geographic differences in the frequency of

interactions between forest pests and other distur-

bances, or differences in the general amount of forest

research being conducted. To account for such differ-

ences, and to control for potential geographic bias, we

conducted a second search in the Web of Science

looking for publications on forest disturbances, in

Table 1 Information extracted from the selected articles

Parameter Categories

Study area Africa; Asia; Europe; North America; Oceania; South America

Insect species Genus or species reported

Insect feeding guild Xylem/phloem feeders insects feeding on the vascular tissue system (e.g., bark beetles)

Foliage feeders insects feeding on leaves or needles (e.g., defoliators)

Other gall producers, saproxylic feeders, seed feeders, or root feeders

Disturbance agents Drought; Fire; Forest management; Landslides; Other pathogen/disease; Pollution; Snowstorm; Wind; Flood

Occurrence of

interaction

Lack of interaction one disturbance has no effect on another

Occurrence of interaction one disturbance effects another

• Synergistic a disturbance increases the likelihood or impact of a subsequent disturbance

• Antagonistic a disturbance reduces the likelihood or impact of a subsequent disturbance

Order of

disturbances

Insect pest later influences another disturbance; Other disturbance later influences insect pest; Insect pest and

other disturbance occur at the same time

Type of response Likelihood earlier disturbance affects the probability of the later one

Severity earlier disturbance influences the severity or intensity of the later one

Fitness earlier disturbance influences the fitness of insect pests later in terms of reproductive success and

progeny survival

Spread earlier disturbance influences later insect spread

Methodological

approach

Empirical model approach models assessing statistical relationships, whether causal or not, between two or

more variables (also called correlative or phenomenological models)

Simulation model approach mechanistic models built on a combination of theoretical understanding and

mathematical concepts (also based on empirical information and correlative relationships) to emulate a real

life system. Normally, simulation models project results to simulated future conditions. They are also called

mechanistic or process-based models

Temporal scale Days/months; 1 year; 2–9 years; 10–49 years; 50–99 years;[100 years

Spatial scale Physiological level; Tree level (individual); Stand level (microhabitat); Landscape level

Ecological

explanation

Conceptual explanation based on ecological processes that cause the interaction of different disturbances

(detailed in Table 2)

The right-hand column lists in detail the different categories into which we classified each study within each information field
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order to then calculate the ratio (per continent) of

articles addressing insect pest interactions with other

forest disturbances to articles only addressing forest

disturbances.

Results

Geographic coverage

Most of the 216 papers reviewed addressed North

American forest systems (173, 79%; Fig. 1). Of these

papers, most focused on forest insects in western

Canada and the USA (133, 61% of the total), followed

by Europe (39, 18%). Studies from other continents

were very rare and no studies were conducted in

Africa.

With respect to articles that studied forest distur-

bances in general (those with and without interactions

among disturbances), the greatest number were from

North America and Europe (9931, 43% and 7453,

32%, respectively). The proportion of forest distur-

bance studies that addressed interactions with pests

was similarly small across all continents: North

America (1.73%), Europe (0.52%), South America

(0.16%), Asia (0.13%), Oceania (0.07%), and Africa

(0%).

Insect species

Xylem and phloem feeders, mainly bark beetles, were

the most studied forest insect pests (71%), mainly

Dendroctonus spp. and Ips typographus (Fig. 2).

Fig. 1 Geographical distribution of number of studies at

continental level. Solid filled circles indicate the distribution

of the 216 papers addressing interactions between insect pests

and other forest disturbances included in the review. Striped

circles indicate the distribution of papers addressing forest

disturbances

Fig. 2 Proportion of studies addressing each insect species,

grouped by insect feeding guild
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Foliage feeding insects such as defoliating budworms

(Choristoneura spp.) and gypsy moth (Lymantria

dispar) (22%), and insects of other feeding groups

(7%) were also studied. We also found that interacting

disturbance agents varied with insect feeding group:

fire, wind, and diseases were usually associated with

xylem/phloem feeders (72%, 66%, and 64% over all

studies of each disturbance, respectively), pollution

was mostly studied in conjunction with foliage feeders

(73%). The influence of drought, forest management,

and other disturbances (landslides, floods, etc.) was

considered across most feeding groups.

Disturbance interactions

Interactions between fire and forest insect pests were

the most commonly studied (41%; Fig. 3). Of these

fire–insect studies, 48% examined how insect-induced

tree mortality affects fuel loads and consequent fire

activity, 36% investigated how fire promotes insect

attacks, and 16% looked at how fire and insect pests

together affect forest structure and composition. The

second most studied interaction was with drought

(24%). Such publications investigated how water-

stressed trees are more susceptible to insect attacks

and how insect outbreaks can increase the

vulnerability of trees to moisture stress. Other inter-

acting agents included forest diseases (11%), forest

management (10%), pollution (6%), and wind and

winter storm events (5%). Finally, 3% of studies

examined other types of forest disturbances (e.g.,

landslides and floods). Although we did not explicitly

include climate change as a disturbance in our list, it

was considered in 48% of the papers examined.

Spatial and temporal scales

A similar number of studies focused on disturbance

interactions at landscape scale (26%), stand scale

(35%), and tree scale (30%), and only 9% of the

studies focused on the physiological scale (Fig. 4).

Simulation modeling studies tended to focus on

landscapes (48%) and stands (44%) and much less

on trees (8%; Fig. 5). Temporal scales covered a broad

range, from a few days to hundreds of years, although

most of the studies focused on interactions occurring

between 2 and 9 years (36%) or 10 and 49 years (24%;

Fig. 4). Longer temporal scales were more frequent in

simulation model studies, where 10–49 years

accounted for 60% of studies and 50–99 years 48%

(Fig. 5).

Fig. 3 Number of papers reporting synergistic interactions,

antagonistic interactions, and a lack of interactions between

insect pest and each type of forest disturbance (left panel).

Number of papers analyzing influences on the likelihood,

severity, or another type of response between insect pests and

each type of forest disturbance (right panel)
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Impact and sources of variation

Most studies reported the occurrence of interactions

between disturbances (71%), considering both syner-

gistic (54%) and antagonistic relationships (17%;

Fig. 3). We found that interactions were more often

identified at shorter time scales than at longer ones,

while the interactions were more frequently identified

at the physiological, tree, and stand scales (74%, 75%,

and 71% respectively), than at landscape scale (65%;

Fig. 4). However, logistic regressions showed that the

presence of disturbance interactions was not signifi-

cantly affected by spatial (r2 = 0.34, p-value[ 0.41)

or temporal scales (r2 = 0.11, p-value = 0.15). Simi-

larly, relationships between temporal or spatial scales

and the disturbance agent involved were not statisti-

cally significant (r2 = 0.18, p-value[ 0.06 and

r2 = 0.14, p-value[ 0.13, respectively). However,

interactions between fire and insect pests were iden-

tified more often at short, than at long temporal scales

(Z = |1.15|, p-value = 0.06 and Z = |1.03|, p-value =

0.07 at temporal scale categories 1 year and 2–9

years, respectively).

No disturbance was found to play a role in

interaction occurrence more frequently than any other

(r2 = 0.11, p-value[ 0.12 in all levels). In terms of

frequencies, insect pest and forest management inter-

actions occurred in 79% of the reviewed papers;

insects and diseases, 77%; insects and drought, 74%;

insects and pollution, 73%; insects and wind, 67%;

insects and fire, 67%; and the two studies addressing

insect pests interacting with storms and landslides also

reported interactions (Fig. 3). No insect feeding guild

tended to be more associated with interaction occur-

rence than any other (r2 = 0.17, p-value[ 0.91 in all

levels). We also found no significant association

between the occurrence of an interaction and the

order of occurrence of the disturbances (r2 = 0.14, p-

value = 0.31). Nonetheless, we found that insects

tended to follow fires in 57% of the reviewed studies,

whereas fire followed insect pest outbreaks in 76% of

the studies. We also found that the interaction of

drought followed by xylem/phloem feeder insect pests

occurred significantly more often than other combi-

nations (Z = 48.79, p-value\ 0.001).

Studies varied in terms of the specific effects of

disturbance interactions they examined. For example,

Fig. 4 Histograms of spatial and temporal scales used by reviewed studies. Heatmap indicates the percentage of interactions or lack of

the interaction reported
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most of the studies reviewed (59%) investigated how

an initial disturbance influences the likelihood of a

subsequent one and, of these studies, disturbance

interactions were successfully identified in 73% of the

cases (Fig. 3). Other papers (27%) examined how a

disturbance affects the severity of subsequent distur-

bances, finding such an interaction in 70% of cases.

Finally, some studies examined how multiple distur-

bances affect other features, like disturbance spread

(10%) or competitiveness of insect pests (4%). How-

ever, logistic regressions showed that no interaction

type was more associated with interaction occurrence

than any other (r2 = 0.13, p-value[ 0.10 for any

type), neither in the case of any disturbance agent in

particular (r2 = 0.12, p-value[ 0.06).

Simulation models and interactions

between disturbances

We found 23 articles (11%) that used simulation

models to investigate the interaction between insect

pests and other disturbances. Again, the most fre-

quently studied interaction was between insect

outbreaks and wildfires (82%), followed by interac-

tions with drought (35%; Fig. 5). Nine articles

included three forest disturbances in a model (insect

pests plus two other disturbances; Fig. 5). Almost all

the models operated at either the landscape or stand

scale (96%), and the most common temporal scale was

10–49 years, although some made projections over as

many as 300 years. Most of the studies (63%) used

previously published models (e.g., LANDIS, SOR-

TIE, LandClim) while some built and used their own

models. Many models used forest attributes (e.g.,

individual tree diameter, age, basal area, tree species),

disturbance severity (for both insect pests and the

interacting disturbance), and climatic variables as

inputs. Other variables such as topography, forest

spatial distribution, and soil properties were only

occasionally considered. Data sources were mainly

external empirical data, either from public repositories

or from published studies (70%). Only in eight articles

did authors compile their own data and in one case

model data were simulated. With respect to scenarios,

most of the studies tested models under different

scenarios, either simulating different disturbance

Fire

Drought

Diseases/Other pests

Management

Other disturbances

< 1 year

1 year

2-9 years

10-49 years

50-99 years

>100 years

Tree level

Stand level

Landscape level

Forest structure

Climate variables

Disturbance severity

Spatial disposition

Topography Soil

External empirical data

Own empirical data

Simulated data

Single

Multiple climate scn.

Multiple dist. intensity scn.
Reference Model
Ager et al. 2007 FVS-PPE, Westwide Pine Beetle M.

Chapin et al. 1997 Frame-based model
Chew et al. 2004 SIMPPLLE
Derose et al.2009 FVS-FFE, Fire and Fuels Extension

Gustafson et al.2010 LANDIS-II
Hansen et al.2015 FVS-FFE, Fire and Fuels Extension

Hoffman et al.2012a WFDS
Hoffman et al.2012b WFDS
James et al.2011 VLM
Linn et al.2013 HIGRAD/FIRETEC
Loehman et al.2017 FireBGC
Lucash et al.2018 LANDIS-II
Maroschek et al.2015 PICUS
Nitschke et al.2012 SORTIE
Økland et al. 2016 Own dispersal model
Potterf et al.2017 IPS
Scheller et al.2018 LANDIS-II
Seidl et al.2016 FVS-FFE, Fire and Fuels Extension

Sieg et al.2017 HIGRAD/FIRETEC
Simard et al.2011 Nexus
Sturtevant et al.2012 LANDIS-II
Temperli et al.2013 LandClim
Temperli et al.2015 LandClim

ScenariosData sourceDisturbance Temporal scale Spatial scale Variables included

Fig. 5 Studies assessing insect pest interactions with other disturbances via simulation models showing the disturbances included, the

temporal and spatial scales used, and the explanatory variables considered
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intensities and/or the effects of different IPCC climate

scenarios (83%;Moss et al. 2010). Finally, simulation-

model studies reported finding interactions between

disturbances at a similar frequency as the empirical

studies reviewed here (68%).

Discussion

Global change is increasing the frequency and severity

of disturbances and the uncertainty linked to distur-

bance interactions. Understanding forest ecosystem

dynamics in such a context requires integrated

research approaches that consider both individual

disturbances and their interactive effects. In surveying

the published literature regarding the reciprocal influ-

ence of forest insect pests on other disturbances, we

found that interactions with fire and drought were the

most frequently studied. We found that any of the

factors considered (i.e., disturbance agent, type of

response, insect feeding guild, or spatial and temporal

scale) could be associated with the probability of an

interaction being detected and reported in the scientific

literature. Finally, simulation models were used in

only 23 publications despite their enormous potential

to help us further unravel how complex interactions

among climate change, forest disturbance, and forest

recovery processes contribute to forest dynamics and

ecosystem resilience.

Geographic coverage and bias

Most studies of interactions between insect pests and

other disturbances were conducted in North America

and Europe. However, these two continents also

produced most of the published papers on forest

disturbances in general, with or without interactions.

There are likely two main reasons for this, acting in

combination: first, the reported absolute forest area

affected by disturbances is larger in North America

(followed by Europe, Africa, and Asia, respectively)

than on other continents (Parker et al. 2006; FAO

2008; Weed et al. 2013). Second, as a result of

economic and educational factors, scientific research

output in general tends to be higher in North America

and Europe (Smith et al. 2014; Gonzalez-Brambila

et al. 2016).

The insect species represented in our survey reflect

the geographic distribution of these studies, thus most

of the insect pests studied were from North America

and Europe. The most common species were those that

exhibit large-scale and periodic outbreaks, such as the

mountain pine beetle (Dendroctonus ponderosae) and

the eastern spruce budworm (Choristoneura fumifer-

ana), as well as other Coleopteran phloem feeders

such as the North American spruce beetle (Dendroc-

tonus rufipennis) and the European spruce bark beetle

(I. typographus). These species attract greater research

attention as they have large impacts on forests around

the globe in terms of extent and severity, and they

commonly occur in regions that are also subject to

fires, drought, and forest management (FAO 2008).

The economic consequences of outbreaks of these

species for management agencies and the forest

industry are not negligible (Chang et al. 2012).

However, our findings suggest that other insect pests

in other regions are understudied, such as the brown

Christmas beetle (Anoplognathus chloropyrus) and

the eucalyptus weevil (Gonipterus scutellatus) that

interact with fires in Australia (Carnegie et al. 2005;

Loch and Matsuki 2010), and the dynamics of the

latter (G. scutellatus) also being related to drought in

South Africa (Graziosi et al. 2020).

Forest disturbances interacting with insect pests

Fire: insect pests

Fire is the most studied disturbance that interacts with

insect pests. Although there is a well-established

hypothesis that insect attacks lead to the accumulation

of more fuel and a consequent amplification of wildfire

susceptibility (McCullough et al. 1998), the studies we

reviewed provided mixed evidence of positive, neg-

ative, and no effect of insects on wildfire (Parker et al.

2006; Jenkins et al. 2014; Meigs et al. 2015; James

et al. 2017) (Fig. 2). Studies showing evidence of

insect-induced fire highlight the increase in litter

(Jenkins 2011; Agne et al. 2016), crown fuel accu-

mulation (Simard et al. 2011; Hoffman et al. 2012a, b;

Jolly et al. 2012; Woolley et al. 2019), vertical

connectivity (Candau et al. 2018; Crotteau et al. 2018;

Watt et al. 2018), flammability of needles (Jolly et al.

2012), and wind penetration due to the lack of leaves

(Linn et al. 2013) as the main drivers of the interaction,

leading to high risk of ignition, spread, and severity of

fire (Bigler et al. 2005; Kulakowski and Veblen 2007).

Other authors did not find a positive link between
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Table 2 Summary of main perturbations interacting with insect pests, their interaction cause, and its ecological explanation

Perturbation Interaction

cause

Ecological explanation References

Fire Fuel load and

connectivity

Insect-caused tree mortality or reduction of biomass

moisture content alter fuel amount and connectivity,

as well as the likelihood of subsequent wildfire

severity

Andrus et al. (2016), Candau et al. (2018), Chapin and

Starfield (1997), Chen et al. (2017), Crotteau et al.

(2018), DeRose and Long (2009), Donato et al.

(2013), Flemin et al. (2002), Hansen et al. (2016),

Hart, Schoennagel, et al. (2015), Harvey et al. (2013,

2014), Harvey, Donato, and Turner (2014), Hoffman

et al. (2012a, b), Hummel and Agee (2003), James

et al. (2011a, 2017), Jenkins (2011), Jolly et al.

(2012), Jorgensen and Jenkins (2010), Klutsch et al.

(2011), Kulakowski and Jarvis (2011), Kulakowski

and Veblen (2007), Liang et al. (2016), Linn et al.

(2013), Lynch and Moorcroft (2008), Makoto et al.

(2012), McCarley et al. (2017), Meigs et al. (2015),

(2016), Mietkiewicz and Kulakowski (2016),

Mietkiewicz et al. (2018), Navarro et al. (2018), Page

and Jenkins (2007a, 2007), Perrakis et al. (2014),

Prichard and Kennedy (2014), Schoennagel et al.

(2012), Sieg et al. (2017), Simard et al. (2011),

Talucci and Krawchuk (2019), Watt et al. (2018) and

Woolley et al. (2019)

Attraction to

the tree

Fire causes tree stress, leading to an increase of ethanol,

monoterpenes and pheromones production that attract

insects. Also, burned deadwood favors insect attacks

Beh et al. (2014), Coleman et al. (2008), Kelsey and

Joseph (2003), Kelsey and Westlind (2017a), Liang

et al. (2016), Lombardero et al. (2006), Veblen et al.

(2006) and Westlind and Kelsey (2019)

Tree

susceptibility

to insects

Fire weakens the defensive system of the surviving

trees in terms of resins and other metabolites

contributing to insect pest establishment

Amman and Ryan (1991), Bebi et al. (2003), Bradley

and Tueller (2001), Chen-Charpentier and Leite

(2014), Davis et al. (2012), Ehnström et al. (1995),

Elkin and Reid (2004), Kulakowski and Jarvis (2013),

Loehman et al. (2017), Lombardero and Ayres

(2011), Lombardero et al.9 2006), McNichol et al.

(2019), Pohl et al. (2006), Powell et al. (2012), Ryan

and Amman (1996), Santoro et al. (2001), Schwilk

et al. (2006) and Verble and Stephan (2009)

Forest structure

and

composition

A first disturbance (fire or insect pest) causes changes in

forest structure (in terms of age, species, understory,

etc.) and favors a second disturbance (pest or fire)

Bakaj et al. (2016), Bebi et al. (2003), Bergeron et al.

(1993), Bigler et al. (2005), Boucher et al. (2018),

Boulanger et al. (2013), Coleman et al. (2008), Fettig

et al. (2010), Hanula et al. (2002), Johansson et al.

(2007), Kerns and Westlind (2013), Kulakowski et al.

(2003, 2012, 2016), Lynch et al. (2006), Lynch and

Moorcroft (2008), Menges and Deyrup (2001),

O’Connor et al. (2015); Perovich and Sibold (2016),

Seidl et al. (2016) and Stevens-Rumann et al. (2015)

Forest

consequences

Coexistence of insect pest and fire compromises forest

regeneration, that is species establishment and tree

growth

Burton and Boulanger (2018), Fettig et al. (2008),

Harvey et al. (2013), 2014, Harvey, Donato, and

Turner 2014, Hicke et al. (2015), Kulakowski et al.

(2013), Land and Rieske (2006), Liang et al. (2016),

Menges and Deyrup (2001), Stevens-Rumann et al.

(2015), Sturtevant et al. (2012) and Vepakomma et al.

(2010)
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Table 2 continued

Perturbation Interaction

cause

Ecological explanation References

Drought Attraction to

the tree

Drought causes tree stress, leading to an increase of

ethanol, monoterpenes, sugars and pheromones

production that attracts insects. New climatic

conditions may alter leaf palatability or deadwood

accumulation, compromising insect attraction

Backhaus et al. (2014), Bolte et al. (2010), Caldeira

et al. (2002), Castagneyrol et al. (2018), Haavik et al.

(2015), Hale et al. (2005), Hart et al. (2014a, b), Hogg

et al. (2002), Itter et al. (2019), Kelsey et al. (2014),

Kelsey and Joseph (2001), Klutsch et al. (2017) and

Ward et al. (2019)

Tree

susceptibility

to insect

Drought weakens the defensive system of trees (e.g.

resins and other metabolites, water potential) and

reduced capacity of fixing nitrogen which contributes

to insect pest establishment

Anderegg et al. (2015), Arango-Velez et al. (2014),

Birch et al. (2019), Björkman (2000), Croise and

Lieutier (1993), Dunn and Lorio (1993), Durand-

Gillmann et al. (2014), Flake and Weisberg (2019),

Flower et al. (2014), Gaylord et al. (2013), Jaime

et al. (2019), Larsson and Björkman (1993), Lucash

et al. (2018), McNulty and Boggs (2010), Moise et al.

(2019), Negron et al. (2009), Pohl et al. (2006),

Sangüesa-Barreda et al. (2015), Scheller et al. (2018),

Suárez-Vidal et al. (2019), Temperli et al. (2015),

Wermelinger et al. (2008) and Wong and Daniels

(2017)

Tree

susceptibility

to drought

Insect pest attacks compromise tree response to later

drought disturbances

Altmann (2013), Bouzidi et al. (2019), Cailleret et al.

(2017), DeRose and Long (2012), Itter et al. (2019)

and Lloret and Kitzberger (2018)

Forest structure

and

composition

Drought modifies forest structure and composition,

directly kills trees and following insects cannot

establish

Hart, Veblen, et al. (2015)

Diseases or

other pests

Attraction to

the tree

A first pest disturbance causes tree stress leading to an

increase of ethanol, monoterpenes and pheromones

production, which attracts a second pest disturbance

Aukema et al. (2006), Beh et al. (2014), Gehring et al.

(2013), Grégoire et al. (2015), Kelsey and Manter

(2004), Kenaley et al. (2008) and Martini et al. (2017)

Insect vector

and symbiosis

Insects and other pest have a direct or indirect

symbiotic collaborative relationship that includes

insects acting as vectors for other forest diseases,

promoting their spread and establishment

Addison et al. (2014), Aukema et al. (2010), Ceriani-

Nakamurakare et al. (2016), Firmino et al. (2017),

Pinna et al. (2019), Rankin and Borden (1991), Reed

et al. (2015), Shanahan et al. (2016) and Xu et al.

(2018)

Interspecific

competition

Insects compete for space, resources, or protect trees

from second infestations

Borkowski and Skrzecz (2016), Bylund and Tenow

(1994), Jones et al. (2015), Kennedy and McCullough

(2002), Kopper et al. (2004), Maňák et al. (2013),

(2015), Rankin and Borden (1991), Tabacaru and

Erbilgin (2015) and Tabacaru et al. (2015)

Management Forest

consequences

Landscape pattern changes due the interaction of insect

pests and forest management

Fettig et al. (2008) and Mladenoff et al. (2000)

Attraction to

the tree

Management causes tree stress leading to an increase of

monoterpenes production what attracts insects

Bauce and Fuentealba (2013) and Leverkus et al. (2018)

Forest structure

and

composition

Forest management reduces insect pest attacks by

changing tree species, structure, and density

(Zhang et al. (1993), Anhold et al. (1996), Ager et al.

(2007), Johansson et al. (2007), Hayes et al. (2008),

Berthiaume et al. (2009), Fettig et al. (2010),

Gustafson et al. (2010), Rossi et al. (2011), 2018),

Schwab et al. (2011), D’Amato et al. (2011), James

et al. (2011), Temperli et al. (2014), Nowak et al.

(2015), Rosenberger et al. (2017), Leite et al. (2018),

Cotton-Gagnon et al. (2018) and Restaino et al.

(2019))
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insect outbreaks and fire, arguing that insect attacks

reduce forest fuel connectivity and therefore fire

activity (DeRose and Long 2009). Still other studies

have suggested that the varying responses of fire

ignition to insect activity is due to the different

temporal scales at which researchers have looked for

these interactions: when examining the effect of

spruce budworm (C. fumiferana) outbreaks on fire

ignition risk in Ontario (Canada), James et al. (2017)

found that immediately following an outbreak the risk

decreased but, 9 to 10 years after the outbreak, ignition

risk increased. However, at broad spatiotemporal

scales, studies found that other factors such as climate,

forest structure, and topography had a greater influ-

ence on fire ignition risk than did the spatial legacies of

past insect outbreaks (Andrus et al. 2016; Speer and

Kulakowski 2017). The specific ecology of the insect

species of interest (Meigs et al. 2015; Cohen et al.

2016), severity of the outbreak (Simard et al. 2011;

Meigs et al. 2015, 2016), and eco-regional context

(James et al. 2017) also affect fire–insect relationships.

Fires also shape the probability of insect outbreaks,

directly through their effects on tree resistance and

indirectly through their effects on forest structure and

succession. Interactions between fire and insects affect

successional trajectories by reducing regeneration

potential (Veblen et al. 2006). Alternatively, the

compounded effects of fire and insects also facilitate

regeneration by reducing tree competition, favoring

seed dispersal (Land and Rieske 2006; Liang et al.

2016), changing forest-age structure (Arbellay et al.

2017), and replacing dominant species (Bergeron et al.

1993). A study on the spruce budworm (C. fumiferana)

system suggests no effect of fire–insect interactions on

long-term forest composition due to rapid regenera-

tion of its primary host (Sturtevant et al. 2012).

In terms of direct effects, non-stand-replacing fires

compromise tree defenses, making them more sus-

ceptible to insect attacks, due to both a reduction in

bark thickness and to stress, which reduces resin

production (Ryan and Amman 1996; Bradley and

Tueller 2001; Santoro et al. 2001; Lombardero and

Ayres 2011; Davis et al. 2012; Boulanger et al. 2013).

Fire-injured trees also synthesize and accumulate

ethanol, monoterpenes, and hormones that, once

released to the atmosphere, act as primary attractant

for some insect species such as Dendroctonus valens,

D. brevicomis, Gnathotrichus pilosus, or Hylurgops

porosus (Kelsey and Joseph 2003; Beh et al. 2014;

Kelsey and Westlind 2017a; Westlind and Kelsey

2019), which can promote outbreaks.

Table 2 continued

Perturbation Interaction

cause

Ecological explanation References

Pollution and

acid rain

Tree

susceptibility

to insects

Host tree fitness affected by high CO2, O3, other

pollutants, or acid rain may consequently alter later

insect attacks

Agrell et al. (2005), Awmack et al. (2004), Coviella and

Trumble (1999), Docherty et al. (1997), Holopainen

et al. (1993), Holton et al. (2003), Kidd (1990),

Kinney et al. (1997), Kozlov et al. (2017), Lindroth

et al. (1993), McDonald et al. (1999), Roth et al.

(1998), Roth and Lindroth (1994) and Williams et al.

(1994)

Natural

enemies

Pollution demonstrate a disrupted synchrony between

natural enemies and insects

Saikkonen and Neuvonen (1993)

Other

disturbances

Forest structure

and

composition

Disturbances causes changes in forest structure and

composition, compromising later insect attacks

Hanewinkel et al. (2008), Radl et al. (2017), Tabacaru

et al. (2016) and Thom et al. (2013)

Tree

susceptibility

to insects

Disturbances such snow, storms, wind, or floods

weakens the defensive system of trees (e.g. resins and

other metabolites) contributing to insect pests

establishment

Angulo-Sandoval et al. (2004), Howe and Baker

(2003), Hunter and Forkner (1999), Reyes and

Kneeshaw (2008) and Yoneya et al. (2014)

Insect

dispersion

Wind favors insect dispersion Havašová et al. (2017) and Potterf and Bone (2017)

Tree

susceptibility

to other

disturbances

Insect pest compromises tree root systems exposing

them to more susceptibility to debris slides

Simard and Lajeunesse (2015)
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Drought: insect pests

Much like fire-stress, drought influences insect-pest

outbreaks because drought-stressed trees synthesize

chemicals that act as insect attractants and, at the same

time, may reduce their leaf- and stem-water potential

limiting their resistance to insect attacks (Kelsey and

Joseph 2001; Lusebrink et al. 2011; Kelsey et al. 2014;

Anderegg et al. 2015; Klutsch et al. 2017). In the case

of defoliators, drought stress can increase tree vulner-

ability as trees produce fewer palatable leaves and

therefore insects need to consume more foliage to

survive (Backhaus et al. 2014). Stressed trees are also

limited in their ability to capture nutrients (McNulty

and Boggs 2010) and produce resins, which makes

them less able to defend themselves against insect

attacks and therefore more vulnerable (Sangüesa-

Barreda et al. 2015; Wong and Daniels 2017).

Conversely, insect outbreaks increase tree vulner-

ability to water stress. When trees are attacked by

insects the crown and/or roots are damaged, compro-

mising water-regulation capacity. Thus, trees become

more susceptible to later episodes of extreme drought

leading to higher mortality rates (McDowell et al.

2008, 2010; Allen et al. 2010; DeRose and Long 2012;

Altmann 2013; Anderegg et al. 2015; Kolb et al.

2016). Some authors have down-played the relevance

of drought–insect interactions arguing that such inter-

actions are secondary relative to other factors, such as

tree fitness or the consequences of forest management

(Hart et al. 2015a, b). Indeed, some studies have

proposed that water stress reduces trees’ vulnerability

to insect attack because of the less hospitable environ-

ment insects experience in a drought-stressed tree

(Hart et al. 2014a, b; Kolb et al. 2016). Yet other

studies have provided evidence that defoliators can

enhance tree water status by reducing canopy transpi-

ration under drought, which is called the defoliation

paradox (Bouzidi et al. 2019; Itter et al. 2019).

Diseases or other insect pests: insect pests

Insect pests also interact with other biotic distur-

bances, such as diseases, pathogens, and other insects.

These interactions may take the form of mutualisms,

such as in the case where insects act as vectors for

fungal infections such as Dutch elm disease or beech

bark disease (the first caused by fungus Ophiostoma

ulmi and the second by Neonectria faginata and N.

ditissima; Rankin and Borden 1991; Aukema et al.

2010; Addison et al. 2014; Reed et al. 2015; Ceriani-

Nakamurakare et al. 2016; Shanahan et al. 2016;

Firmino et al. 2017; Xu et al. 2018; Pinna et al. 2019)

or vectors for other bark beetle species (Croise and

Lieutier 1993). As happens in the cases of fire and

drought, when insects or fungi attack trees, they

induce the production of volatile chemicals that attract

other insects (Kelsey and Manter 2004; Aukema et al.

2006; Grégoire et al. 2015; Martini et al. 2017).

However, inter-specific competition among insects or

pathogens may diminish effects on host trees (Rankin

and Borden 1991; Kennedy and McCullough 2002;

Kopper et al. 2004; Tabacaru and Erbilgin 2015).

Forest management: insect pests

Pest control through forest management is a major

topic that is out of the scope of this review. However,

forest management (whether focused on pest control

or not) causes alterations to forest landscapes and may

interact with insect pest disturbances. Forest manage-

ment affects insect outbreaks both negatively and

positively (Fig. 3) and at different scales, from

individual trees to landscapes (Hindmarch and Reid

2001; Ager et al. 2007; Johansson et al. 2007;

Temperli et al. 2014). Thinning, prescribed burning,

and commercial plantations change forest composi-

tion, landscape mosaics, and tree-age distributions.

The ‘‘silvicultural hypothesis’’ states that forest

diversity can mitigate the effects of outbreaking

insects (Miller and Rusnock 1993; Jactel and Brock-

erhoff 2007). This hypothesis is supported by repeated

observations that more diverse forest stands compris-

ing hardwood species tend to experience less damage

than homogenous coniferous stands do (Su et al. 1996;

Campbell et al. 2008). Further, in a recent long-term

study, Robert et al. (2018) found that the legacy of

forest management strategies helped to explain the

frequency, intensity, and spatial synchrony of spruce

budworm (C. fumiferana) outbreaks. Removing dead

trees, replanting new tree species, or prescribed burns

interfered with outbreak development and spread

(D’Amato et al. 2011; Rossi et al. 2011). Also, thinned

stands were less susceptible to bark beetle species

attack, likely because the plumes of pheromone the

insects use for communication could not reach their

targets (Thistle 2005), and because vigor and
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resistance to insect attacks was improved in thinned

trees (Anhold et al. 1996; Macquarrie and Cooke

2011).

Pollution: insect pests

Pollution also interacts with insect pest disturbances.

Most research indicates that pollutants reduce host-

tree quality as well as insect fitness, leading to a

reduction in insect attacks. For instance, high ozone

concentrations reduce insect fecundity and coloniza-

tion rates. Increased CO2 and heavy metal concentra-

tions reduce growth, survival, development, and size

of larvae and adults (Kopper and Lindroth 2003). Acid

rain negatively affects insects directly by causing

mortality, or indirectly by reducing host-plant quality

(Kinney et al. 1997; Butler and Trumble 2008).

However, some studies find little influence of pollu-

tion on insect performance or even a positive influence

(Awmack et al. 2004). Some aphids and lepidopterans

increase their growth rate and survival under high

concentration of SO2, NO2, or O3 (Butler and Trumble

2008). Elevated concentrations of CO2 may play a role

in insect interactions with pathogens (Roth and

Lindroth 1994; Roth et al. 1998; Stiling et al. 1999)

or insects’ natural enemies (Percy et al. 2002),

although most common responses were negative or

neutral. Some studies verified that under simulated

acid rain conditions, insect attacks were more severe

than in the control situation (Palokangas and Neuvo-

nen 1995; Saikkonen et al. 1995).

Other disturbances: insect pests

Other disturbances such as storms, windthrow, snow

avalanches, and landslides influence insect outbreaks

and their effects on forests. Together, these agents

build a complex picture of direct, indirect, bidirec-

tional, and multidirectional interactions. Such distur-

bances may cause changes in forest structure,

compromising later insect attacks (Hanewinkel et al.

2008; Louis et al. 2014; Perovich and Sibold 2016).

Also, after severe gales, storms, or landslides, the

accumulation of dead wood and hence the probability

of insect attacks may increase (Howe and Baker 2003;

Yamazaki 2011; Simard and Lajeunesse 2015).

Finally, some authors have mentioned that episodes

of strong winds might facilitate the spread of insect

pests (Stadelmann et al. 2014; Havašová et al. 2017;

Potterf and Bone 2017).

Climate change: insect pests

Climate change is not a forest disturbance in itself, but

it has been widely recognized as a major driver of

changes in insect pest regimes (Rouault et al. 2006;

Bolte et al. 2010; DeRose and Long 2012; Temperli

et al. 2013, 2015; Pawson et al. 2017; Rogers et al.

2017). Like many of the disturbances we have

discussed, climate change influences insect pests both

directly and indirectly. In terms of direct effects,

increases in temperature and changes in moisture

availability may increase insect survival and develop-

ment rates (van Lierop et al. 2015; Malesky et al.

2018). These changes are likely to lead to shifts in

geographic distributions (Friedenberg et al. 2008;

Bolte et al. 2010; DeRose and Long 2012; Schwartz-

berg et al. 2014; Renwick et al. 2016; Marini et al.

2017; Pawson et al. 2017; Rogers et al. 2017; Jaime

et al. 2019), although such positive feedback is still

under discussion (Pyšek et al. 2010). In terms of

indirect effects, climate change affects insect pests

through direct and indirect influence on other agents

(Pechony and Shindell 2010; Temperli et al. 2013;

Seidl and Rammer 2017; Seidl et al. 2017).

Sources of variation in disturbance interactions

The interactions between insect pests and other forest

disturbances highlighted in this review were often

significant and synergistic (Fig. 3). Disturbances dis-

rupt the structure and composition of ecosystems,

create heterogeneous landscape mosaics, and change

the physical environment (White and Pickett 1985;

Turner 2010). In doing so, they can force ecosystem

renewal, cause temporal disorganization, and alter the

susceptibility of forests to new disturbances. Such

synergistic interactions are especially important for

the dynamics of biotic disturbances in a changing

climate (Seidl et al. 2017).

In this review, we aimed to identify the main

elements that favor or limit forest disturbance inter-

actions. Different authors emphasize the relevance of

the particular insect species involved in the interaction

(Joseph et al. 2001; Hanula et al. 2002; Meigs et al.

2015, 2016; Kelsey and Westlind 2017a), as different

species tend to have different autecologies and vary in
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terms of feeding strategies, even within feeding guilds.

Further, some species were studied more than others

with respect to their interactions with other distur-

bances (e.g., the interactions between Dendroctonus

spp. and C. fumiferana with fire). We therefore

hypothesized that insect feeding guild (i.e., defoliators

vs. xylem/phloem feeders) might be associated with

particular disturbances, but the results presented here

did not support this theory. Only disturbances caused

by xylem/phloem feeders tended to occur more

frequently following periods of drought, probably

due to the higher concentration of soluble sugars in the

bark of water-stressed trees resulting in improved

insect larvae performance (Caldeira et al. 2002).

We hypothesized that interactions between distur-

bances might be more frequent at smaller spatial (at

the physiological- and tree-scale) and temporal scales

(1 year or less; Fig. 4). When larger spatiotemporal

scales are considered, there may be more agents and

processes that influence forest dynamics and distur-

bance and, therefore, it becomes more difficult to

identify clear relationships between disturbances.

Also, interactions at small spatiotemporal scales, such

as positive attraction of insects at the physiological

scale a few days after a fire or drought, are probably

unlikely to translate into landscape-scale outbreaks

(Kelsey and Joseph 2001, 2003; Kelsey et al. 2016;

Kelsey andWestlind 2017a, b). However, although we

identified differences in the frequency of interactions

according to spatial and temporal scale, these were not

significant. Thus, we concluded that scales are not

correlated with the probability of identifying an

interaction between two disturbances.

Studies of interactions between disturbances

include a broad range of disturbance-specific features

(e.g., fire disturbances are described with respect to

size, severity, probability of ignition) that may affect

the interaction. This is the case that Meigs (2015,

2016) and Harvey (2013, 2014) presented when they

reported that insect attacks did not increase fire

likelihood but altered its severity and spread. Thus,

in this study we specified the type of response in

disturbance interactions reported in every study

(influences on the likelihood, severity, spread or insect

fitness). Most of the reviewed papers that focused on

insect–fire interactions examined how increased fuel

loads caused by insect attacks (according to the

duration of defoliation and time since the end of

defoliation) facilitate subsequent fire ignition (e.g.,

Watt et al. 2020). In respect of severity, studies such as

Derose and Long (2009) and Donato et al. (2013)

reported a reduction in fire severity following insect

attack because defoliation resulted in reduced hori-

zontal and vertical fuel connectivity. However, our

results showed that the occurrence of interactions

between disturbances was not correlated with the type

of response considered, either for the specific case of

fire or for other disturbances. Only a small relationship

between pollution and its impacts on insect fitness was

found. Thus, we highlight the importance of charac-

terizing the specific nature of disturbance interactions

and the consequences on disturbed ecosystems, in

addition to identifying when and where an interaction

occurs.

The role of simulation models

There is increasing interest in examining the combined

effects of multiple disturbances on landscape dynam-

ics (Chew et al. 2004; Temperli et al. 2015; Seidl et al.

2016; Tabacaru et al. 2016; Lucash et al. 2018;

Scheller et al. 2018). However, empirical approaches

are limited in their ability to address such complex

questions because past disturbances may provide an

insufficient basis to understand potential future

changes resulting from climate change, invasive

species, and increasing human activity (Temperli

et al. 2013, 2015). Simulation modeling provides

one useful approach to studying future landscape

changes and exploring emergent dynamics (Perera

2015).

Nonlinear, cross-scale interactions are inherent in

forest landscape dynamics (e.g., interactions at tree

level may leave a footprint at the landscape level;

Peters et al. 2007). Empirical approaches have limited

application at broad temporal and spatial scales or

when processes occur across scales. Most of the

modeling studies we reviewed used spatially explicit

models at the scale of the landscape or stand. These

models also explored longer time frames than did

empirical studies (Fig. 5), of up to 300 years (James

et al. 2011a; Hoffman et al. 2012a, b; Sturtevant et al.

2012; Loehman et al. 2017). The ability to explore

long-term dynamics is essential in the case of insect

pest disturbances because of the long term spatial

legacies they can create and, in some cases, the

cyclical population dynamics they generate (Fig. 5;

Robert et al. 2020).
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Future environmental change is uncertain, as are

the dynamics of stochastic disturbances. Simulation

models allows for the explicit integration of this

uncertainty through scenario testing. Model-mediated

exploration of such uncertain parameter space is

essential to improve understanding of how different

sources of uncertainty might impact the target system.

Most of the articles we examined here engaged in

some sort of scenario testing. (Fig. 5). Scenarios were

mainly used to analyze the role of climate change in

forest disturbances, usually using the IPCC climate

projections (Moss et al. 2010). Other studies used

scenarios to test different disturbance impacts or the

response of the affected habitat (Fig. 5). Long-term

projections based on a range of plausible scenarios are

also valuable in facilitating policy development

(Økland et al. 2016; Morán-Ordóñez et al. 2018).

While a modeling approach has benefits relative to

relying on historical empirical data (e.g., the oppor-

tunity to observe unexpected emergent phenomena),

developing spatial models of forest disturbance inter-

actions can be challenging. A central challenge relates

to the acquisition of high-quality data for parameter-

izing complex spatially-explicit simulation models,

especially at large scales. Indeed, the lack of such

information often stimulates the adoption of a mod-

eling approach. Some authors collected their own data

to calibrate the model DeRose and Long 2009; Simard

et al. 2011; Hoffman et al. 2012a, b; Nitschke et al.

2012; Linn et al. 2013; Hansen et al. 2015; Økland

et al. 2016), whereas others used another approach,

simulating the input data of the model based on expert

knowledge (Temperli et al. 2015). Most modeling

studies we reviewed here used data from public

repositories or from other publications (Fig. 5). Long-

term data monitoring and remote sensing data are

particularly useful in landscape dynamics modeling

because these sources offer continuous information in

time and/or space (Chapin and Starfield 1997; Ager

et al. 2007; Gustafson et al. 2010).

Other challenges to developing useful models of

forest disturbance include integrating multiple rele-

vant processes and their interactions at different

spatiotemporal scales, as well as modeling them in a

mechanistic way (Baker and Robinson 2010).

Addressing these challenges requires explicit assump-

tions and simplifications, compromising realism while

maintaining coherence, internal consistency, and

plausible descriptions of modelled dynamics (Baker

and Robinson 2010; Morán-Ordóñez et al. 2018).

Thus, when working with multiple disturbances, one is

restricted to including only relevant landscape vari-

ables (one or a few in number) both as explanatory and

response variables (e.g., stand volume, species; Clark

and Gelfand 2006; Gustafson et al. 2010).

Of the 216 articles we reviewed, only 23 were based

on simulation models. However, interest in using

simulation modeling to explore disturbance interac-

tions seems to be increasing: 83% of the model-based

studies were published after 2010. Given the utility of

simulation models mentioned above, both in scientific

research and in the development of forest policies, we

would emphasize the importance of the further

development of simulation modeling capacity through

research on how to better model complex processes

and their multi-scale dynamics. To complement such

model development, additional empirical information

is required to improve model parameterization and

model predictions, and it is the reciprocal interaction

between empirical and simulation studies that will

identify new challenges and opportunities and move

our collective understanding forward.

Emerging disturbances and challenges to their

study

Climate change, increasing global trade, and land-use

change all have the potential to alter interactions

between insect pests and other disturbances. Such

drivers lead to an increase in invasive species that will

compromise host ecosystems (Brockerhoff et al. 2006;

Lovett et al. 2006; Ward and Masters 2007; Smith

et al. 2012; Dix and Britton 2014; van Lierop et al.

2015; Choi et al. 2019). Some species considered to be

invasive were introduced centuries ago and their

effects on ecosystems are usually considered along-

side native species. That is the case with the gypsy

moth (L. dispar), which is of Euro Asiatic origin but

was introduced to the US at the end of the nineteenth

century (Kinney et al. 1997; Roth et al. 1998;

McDonald et al. 1999). However, impacts of recent

invasive insect pests are hard to predict because there

is little empirical evidence about their performance in

new environments with new competitors. One such

species is the box tree moth (Cydalima perspectalis)

native to Asia, which has been invading European

forests since 2007 (Bras et al. 2019). Its defoliating

effect leads to the death of box trees (Buxus
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sempervirens), which are abundant in the understories

of European forests. This may cause an increase in fuel

availability and consequently affect the severity of fire

risk or, conversely, it may reduce the probability of fire

spread by eliminating the main understory species and

reducing fuel connectivity.

Land-use change poses another challenge to under-

standing interactions between insects and other forest

disturbances. It is broadly assumed that the replace-

ment of primary forests with pastures and croplands

causes a reduction in insect biodiversity, as seen in

different ecosystems around the world (Koh 2007;

Almeida et al. 2011; Meijer et al. 2011; Korasaki et al.

2013). Moreover, Barragán et al. (2011) documented a

loss in beetle functional diversity (based on food

relocation, body size, daily activity period, and food

preferences) as a result of land-use changes in Mexico.

However, the study of land-use effects on insect pests

is mainly focused on agriculture (Kiritani 2007; van

Lierop et al. 2015), and few studies investigate forest

insects in the context of land-use change (Rosenberger

et al. 2017). An example may be the pine procession-

ary moth (Thaumetopoea pityocampa), whose growth

is linked to habitat type (Torres-Muros et al. 2017).

Given rural abandonment and pine reforestation in the

natural range of this insect species (Pausas et al. 2008;

Cervera et al. 2019), an increase in pine processionary

moth pest risk is possible. Thus, researchers and

managers should acknowledge that current dynamics

and management policy effects extend beyond the

short-term and local scale and should pay special

attention not only to current forest pests but also to

those that may have future impacts (Table 2).

Finally, it is essential to improve theoretical

knowledge of outbreaking insect species (genetics,

population dynamics, species ecology, and distribu-

tion) to better understand the mechanisms behind

interaction dynamics (Ayres and Lombardero 2000;

Loehman et al. 2017; Xu et al. 2018). Other authors

have highlighted problems with obtaining high-quality

data for such studies, because long-term and broad-

scale monitoring is needed (Hanula et al. 2002;

Aukema et al. 2010; Gustafson et al. 2010). New

technologies and platforms, such as data obtained

using satellites or LiDAR, as well as improved

demographic and population genetic data, represent

enormous resources with which we can better param-

eterize spatially-explicit simulation models (Chou

et al. 2010; Hollaus and Vreugdenhil 2019).

Conclusions

Our review summarizes the current understanding of

interactions between insect pest outbreaks and other

forest disturbances and highlights the complexity of

these processes. Such interactions are critical drivers

of landscape dynamics in many forested systems.

Reported interactions between disturbances were

synergistic, antagonistic, or not detected. They were

detected at different spatial (from tree to landscape

level) and temporal (from days to century) scales and

included various types of interaction (influences on the

likelihood, severity, spread or insect fitness). How-

ever, we found no clear relation between such

disturbance features and the occurrence of

interactions.

The impacts of insect pest outbreaks are expected to

increase with intensifying global change. The fitness

and distribution of insect species are strongly influ-

enced by climate. Furthermore, insect pest outbreaks

can interact with pollution and land-use changes, and

invasions by insect species are increasing as a result of

global trade. Understanding the potential for altered

interactions between insect pests and other distur-

bances as well as the emergence of novel interactions

are major challenges in forest dynamics research. In

this context, simulation models and spatially explicit

simulations of potential future global-change scenar-

ios may play an important role in the management of

disturbance interactions and landscape dynamics

because they can incorporate multiple drivers that

operate at broad spatiotemporal scales and can be used

to project possible future scenarios. Such predictions

of future ecosystem conditions must be supported by

appropriate theoretical knowledge and must be rele-

vant to decision-making processes.
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Arango-Velez A, Galindo González LM, Meents MJ, El Kayal

W, Cooke BJ, Linsky J, Lusebrink I, Cooke JEK (2014)

Influence of water deficit on the molecular responses of

Pinus contorta9Pinus banksianamature trees to infection

by the mountain pine beetle fungal associate, Grosmannia
clavigera. Tree Physiol 34:1220–1239

Arbellay E, Daniels LD, Mansfield SD, Chang AS (2017)

Cambial injury in lodgepole pine (Pinus contorta):
mountain pine beetle vs fire. Tree Physiol 37:1611–1621

Aukema BH, Richards GR, Krauth SJ, Raffa KF (2006) Species

assemblage arriving at and emerging from trees colonized

by Ips pini in the Great Lakes Region: partitioning by time

since colonization, season, and host species. Ann Entomol

Soc Am 97:117–129

Aukema BH, Zhu J, Møller J, Rasmussen JG, Raffa KF (2010)

Predisposition to bark beetle attack by root herbivores and

associated pathogens: roles in forest decline, gap forma-

tion, and persistence of endemic bark beetle populations.

For Ecol Manag 259:374–382

Awmack CS, Harrington R, Lindroth RL (2004) Aphid indi-

vidual performance may not predict population responses

to elevated CO2 or O3. Glob Change Biol 10:1414–1423

Ayres MP, Lombardero M (2000) Assessing the consequences

of global change for forest disturbance from herbivores and

pathogens. Sci Total Environ. https://doi.org/10.1016/

S0048-9697(00)00528-3

Backhaus S, Wiehl D, Beierkuhnlein C, Jentsch A, Wellstein C

(2014) Warming and drought do not influence the palata-

bility ofQuercus pubescensWilld. leaves of four European

provenances. Arthropod Plant Interact 8:329–337

Bakaj F, Mietkiewicz N, Veblen TT, Kulakowski D (2016) The

relative importance of tree and stand properties in sus-

ceptibility to spruce beetle outbreak in the mid-20th cen-

tury. Ecosphere 7:1–17

Baker PJ, Robinson A (2010) Review and comparison of tree-

and stand-based forest growth models for potential inte-

gration into EnSym. University of Melbourne, Melbourne

Barbet-Massin M, Rome Q, Villemant C, Courchamp F (2018)

Can species distribution models really predict the expan-

sion of invasive species? PLoS ONE 13:1–14

Barragán F, Moreno CE, Escobar F, Halffter G, Navarrete D

(2011) Negative impacts of human land use on dung beetle

functional diversity. PLoS ONE. https://doi.org/10.1371/

journal.pone.0017976
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Maňák V, Björklund N, Lenoir L, Nordlander G (2015) The

effect of red wood ant abundance on feeding damage by the

pine weevil Hylobius abietis. Agric For Entomol 17:57–63
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